Shipshape RenderMan Art Challenge

Last year, I participated in one of Pixar’s RenderMan Art Challenges as a way to learn more about modern RenderMan [Christensen et al. 2018] and as a way to get some exposure to tools outside of my normal day-to-day toolset (Disney’s Hyperion Renderer professionally, Takua Renderer as a hobby and learning exercise). I had a lot of fun, and wound up doing better in the “Woodville” art challenge contest than I expected to! Recently, I entered another one of Pixar’s RenderMan Art Challenges, “Shipshape”. This time around I entered just for fun; since I had so much fun last time, I figured why not give it another shot! That being said though, I want to repeat the main point I made in my post about the previous “Woodville” art challenge: I believe that for rendering engineers, there is enormous value in learning to use tools and renderers that aren’t the ones we work on ourselves. Our field is filled with brilliant people on every major rendering team, and I find both a lot of useful information/ideas and a lot of joy in seeing the work that friends and peers across the field have put into commercial renderers such as RenderMan, Arnold, Vray, Corona, and others.

As usual for the RenderMan Art Challenges, Pixar supplied some base models without any uvs, texturing, shading, lighting or anything else, and challenge participants had to start with the base models and come up with a single compelling image for a final entry. I had a lot of fun spending evenings and weekends throughout the duration of the contest to create my final image, which is below. I got to explore and learn a lot of new things that I haven’t tried before, which this post will go through. To my enormous surprise, this time around my entry won first place in the contest!

Figure 1: My entry to Pixar's RenderMan Shipshape Art Challenge, titled "Oh Good, The Bus is Here". Click for 4K version. Base ship, robot, and sextant models are from Pixar; all shading, lighting, additional modeling, and environments are mine. Ship concept by Ian McQue. Robot concept by Ruslan Safarov. Models by Cheyenne Chapel, Aliya Chen, Damian Kwiatkowski, Alyssa Minko, Anthony Muscarella, and Miguel Zozaya © Disney / Pixar - RenderMan "Shipshape" Art Challenge.

Initial Explorations

For this competition, Pixar provided five models: a futuristic scifi ship based on an Ian McQue concept, a robot based on a Ruslan Safarov concept, an old wooden boat, a butterfly, and a sextant. The fact that one of the models was based on an Ian McQue concept was enough to draw me in; I’ve been a big fan of Ian McQue’s work for many years now! I like to start these challenges by just rendering the provided assets as-is from a number of different angles, to try to get a sense of what I like about the assets and how I will want to showcase them in my final piece. I settled pretty quickly on wanting to focus on the scifi ship and the robot, and leave the other three models aside. I did find an opportunity to bring in the sextant in my final piece as well, but wound up dropping the old wooden boat and the butterfly altogether. Here are some simple renders showing what was provided out of the box for the scifi ship and the robot:

Figure 2: Scifi ship base model provided by Pixar, rendered against a white cyclorama background using a basic skydome.

Figure 3: Robot base model provided by Pixar, rendered against a white cyclorama background using a basic skydome.

I initially had a lot of trouble settling on a concept and idea for this project; I actually started blocking out an entirely different idea before pivoting to the idea that eventually became my final image. My initial concept included the old wooden boat in addition the scifi ship and the robot; this initial concept was called “River Explorer”. My initial instinct was to try to show the scifi ship from a top-down view, in order to get a better view of the deck-boards and the big VG engine and the crane arm. I liked the idea of putting the camera at roughly forest canopy height, since forest canopy height is a bit of an unusual perspective for most photographs due to canopy height being this weird height that is too high off the ground for people to shoot from, but too low for helicopters or drones to be practical either. My initial idea was about a robot-piloted flying patrol boat exploring an old forgotten river in a forest; the ship would be approaching the old sunken boat in the river water. With this first concept, I got as far as initial compositional blocking and initial time-of-day lighting tests:

Figure 4: Initial "River Explorer" concept, daylight lighting test.

Figure 5: Initial "River Explorer" concept, dusk lighting test.

If you’ve followed my blog for a while now, those pine trees might look familiar. They’re actually the same trees from the forest scene I used a while back, ported from Takua’s shading system to RenderMan’s PxrSurface shader.

I wasn’t ever super happy with the “River Explorer” concept; I think the overall layout was okay, but it lacked a sense of dynamism and overall just felt very static to me, and the robot on the flying scifi ship felt kind of lost in the overall composition. Several other contestants wound up also going for similar top-down-ish views, which made me worry about getting lost in a crowd of similar-looking images. After a week of trying to get the “River Explorer” concept to work better, I started to play with some completely different ideas; I figured that this early in the process, a better idea was worth more than a week’s worth of sunk time.

Layout and Framing

I had started UV unwrapping the ship already, and whilst tumbling around the ship unwrapping all of the components one-by-one, I got to see a lot more of the ship and a lot more interesting angles, and I suddenly came up with a completely different idea for my entry. The idea that popped into my head was to have a bunch of the little robots waiting to board one of the flying ships at a quay or something of the sort. I wanted to convey a sense of scale between the robots and the flying scifi ship, so I tried putting the camera far away and zooming in using a really long lens. Since long lenses have the effect of flattening perspective a bit, using a long lens helped make the ships feel huge compared to the robots. At this point I was just doing very rough, quick, AO render “sketches”. This is the AO sketch where my eventual final idea started:

Figure 6: Rough AO render "sketch" that eventually evolved into my final idea.

I’ve always loved the idea of the mundane fantastical; the flying scifi ship model is fairly fantastical, which led me to want to do something more everyday with them. I thought it would be fun to texture the scifi ship model as if it was just part of a regular metro system that the robots use to get around their world. My wife, Harmony, suggested a fun idea: set the entire scene in drizzly weather and give two of the robots umbrellas, but give the third robot a briefcase instead and have the robot use the briefcase as a makeshift umbrella, as if it had forgotten its umbrella at home. The umbrella-less robot’s reaction to seeing the ship arriving provided the title for my entry- “Oh Good, The Bus Is Here”. Harmony also pointed out that the back of the ship has a lot more interesting geometric detail compared to the front of the ship, and suggested placing the focus of the composition more on the robots than on the ships. To incorporate all of these ideas, I played more with the layout and framing until I arrived at the following image, which is broadly the final layout I used:

Figure 7: Rough AO render "sketch" of my final layout.

I chose to put an additional ship in the background flying away from the dock for two main reasons. First, I wanted to be able to showcase more of the ship, since the front ship is mostly obscured by the foreground dock. Second, the background ship helps fill out and balance the right side of the frame more, which would otherwise have been kind of empty.

In both this project and in the previous Art Challenge, my workflow for assembling the final scene relies heavily on Maya’s referencing capabilities. Each separate asset is kept in its own .ma file, and all of the .ma files are referenced into the main scene file. The only the things the main scene file contains are references to assets, along with scene-level lighting, overrides, and global-scale effects such as volumes and, in the case of this challenge, the rain streaks. So, even though the flying scifi ship appears in my scene twice, it is actually just the same .ma file referenced into the main scene twice instead of two separate ships.

The idea of a rainy scene largely drove the later lighting direction of my entry; from this point I basically knew that the final scene was going to have to be overcast and drizzly, with a heavy reliance on volumes to add depth separation into the scene and to bring out practical lights on the ships. I had a lot of fun modeling out the dock and gangway, and may have gotten slightly carried away. I modeled every single bolt and rivet that you would expect to be there in real life, and I also added lampposts to use later as practical light sources for illuminating the dock and the robots. Once I had finished modeling the dock and had made a few more layout tweaks, I arrived at a point where I was happy to start with shading and initial light blocking. Zoom in if you want to see all of the rivets and bolts and stuff on the dock:

Figure 8: AO render of my layout going into shading and lighting. Check out all of the crazy detail on the dock that I modeled!

UV Unwrapping

UV unwrapping the ship took a ton of time. For the last challenge, I relied on a combination of manual UV unwrapping by hand in Maya and using Houdini’s Auto UV SOP, but I found that the Auto UV SOP didn’t work as well on this challenge due to the ship and robot having a lot of strange geometry with really complex topology. On the treehouse in the last challenge, everything was more or less some version of a cylinder or a rectangular prism, with some morphs and warps and extra bits and bobs applied. Almost every piece of the ship aside from the floorboards are very complex shapes that aren’t easy to find good seams for, so the Auto UV SOP wound up making a lot of choices for UV cuts that I didn’t like. As a result, I basically manually UV unwrapped this entire challenge in Maya.

A lot of the complex undercarriage type stuff around the back thrusters on the ship was really insane to unwrap. The muffler manifold and mechanical parts of the crane arm were difficult too. Fortunately though, the models came with subdivision creases, and a lot of the subd crease tags wound up proving to be useful hints towards good places to place UV edge cuts. I also found that the new and improved UV tools in Maya 2020 performed way better than the UV tools in Maya 2019. For some meshes, I manually placed UV cuts and then used the unfold tool in Maya 2020, which I found generally worked a lot better than Maya 2019’s version of the same tool. For other meshes, Maya 2020’s auto unwrap actually often provided a useful starting place as long a I rotated the piece I was unwrapping into a more-or-less axis-aligned orientation and froze its transform. After using the auto-unwrap tool, I would then transfer the UVs back onto the piece in its original orientation using Maya’s Mesh Transfer Attributes tool. The auto unwrap tended to cut meshes into too many UV islands, so I would then re-stitch islands together and place new cuts where appropriate.

When UV unwrapping, a good test to see how good the resultant UVs are is to assign some sort of a checkerboard grid texture to the model and look for distortion in the checkerboard pattern. Overall I think I did an okay job here; not terrible, but could be better. I think I managed to hide the vast majority of seams pretty well, and the total distortion isn’t too bad (if you look closely, you’ll be able to pick out some less than perfect areas, but it was mostly okay). I wound up with a high degree of variability in the grid size between different areas, but I wasn’t too worried about that since my plan was to adjust texture resolutions to match.

Figure 9: Checkerboard test for my UV unwrapping of the scifi ship.

After UV unwrapping the ship, UV unwrapping the robot proved to be a lot easier in comparison. Many parts of the robot turn out to be the same mesh just duplicated and squash/stretch/scaled/rotated, which means that they share the same underlying topology. For all parts that share the same topology, I was able to just UV unwrap one of them, and then copy the UVs to all of the others. One great example is the robot’s fingers; most components across all fingers shared the same topology. Here’s the checkerboard test applied to my final UVs for the robot:

Figure 10: Checkerboard test for my UV unwrapping of the robot.

Texturing the Ship

After trying out Substance Painter for the previous RenderMan Art Challenge and getting fairly good results, I went with Substance Painter again on this project. The overall texturing workflow I used on this project was actually a lot simpler compared with the workflow I used for the previous Art Challenge. Last time I tried to leave a lot of final decisions about saturation and hue and whatnot as late as possible, which meant moving those decisions into the shader so that they could be changed at render-time. This time around, I decided to make those decisions upfront in Substance Painter; doing so makes the Substance Painter workflow much simpler since it means I can just paint colors directly in Substance Painter like a normal person would, as opposed to painting greyscale or desaturated maps in Substance Painter that are expected to be modulated in the shader later. Also, because of the nature of the objects in this project, I actually used very little displacement mapping; most detail was brought in through normal mapping, which makes more sense for hard surface metallic objects. Not having to worry about any kind of displacement mapping simplified the Substance Painter workflow a bit more too, since that was one fewer texture map type I had to worry about managing.

One the last challenge I relied on a lot of Quixel Megascans surfaces as starting points for texturing, but this time around I (unintentionally) found myself relying on Substance smart materials more for starting points. One thing I like about Substance Painter is how it comes with a number of good premade smart materials, and there are even more good smart materials on Substance Source. Importantly though, I believe that smart materials should only serve as a starting point; smart materials can look decent out-of-the-box, but to really make texturing shine, a lot more work is required on top of the out-of-the-box result in order to really create story and character and a unique look in texturing. I don’t like when I see renders online where a smart material was applied and left in its out-of-the-box state; something gets lost when I can tell which default smart material was used at a glance! For every place that I used a smart material in this project, I used a smart material (or several smart materials layered and kitbashed together) as a starting point, but then heavily customized on top with custom paint layers, custom masking, decals, additional layers, and often even heavy custom modifications to the smart material itself.

Figure 11: Texturing the main piece of the ship's hull in Substance Painter.

I was originally planning on using a UDIM workflow for bringing the ship into Substance Painter, but I wound up with so many UDIM tiles that things quickly became unmanageable and Substance Painter ground to a halt with a gigantic file containing 80 (!!!) 4K UDIM tiles. To work around this, I broke up the ship into a number of smaller groups of meshes and brought each group into Substance Painter separately. Within each group I was able to use a UDIM workflow with usually between 5 to 10 tiles.

I had a lot of fun creating custom decals to apply to various parts of the ships and to some of the robots; even though a lot of the details and decals aren’t very visible in the final image, I still put a good amount of time into making them simply to keep things interesting for myself. All of the decals were made in Photoshop and Illustrator and then brought in to Substance Painter along with opacity masks and applied to surfaces using Substance Painter’s projection mode, either in world space or in UV space depending on situation. In Substance Painter, I created a new layer in with a custom paint material and painted the base color for the paint material by projecting the decal, and then masked the decal layer using the opacity mask I made using the same projection that I used for the base color. The “Seneca” logo seen throughout my scene has shown up on my blog before! A few years ago on a Minecraft server that I played a lot on, a bunch of other players and I had a city named Seneca; ever since then, I’ve tried to sneak in little references to Seneca in projects here and there as a small easter egg.

Many of the buses around where I live have an orange and silver color scheme, and while I was searching the internet for reference material, I also found pictures of the Glasgow Subway’s trains, which have an orange and black and white color scheme. Inspired by the above, I picked an orange and black color scheme for the ship’s Seneca Metro livery. I like orange as a color, and I figured that orange would bring a nice pop of color to what was going to be an overall relatively dark image, I made the upper part of the hull orange but kept the lower part of the hull black since the black section was going to be the backdrop that the robots would be in front of in the final image; the idea was that keeping that part of the hull darker would allow the robots to pop a bit more visually.

One really useful trick I used for masking different materials was to just follow edgeloops that were already part of the model. Since everything in this scene is very mechanical anyway, following straightedges in the UVs helps give everything a manufactured, mechanical look. For example, Figure 12 shows how I used Substance Painter’s Polygon Fill tool to mask out the black paint from the back metal section of the ship’s thrusters. In some other cases, I added new edgeloops to the existing models just so I could follow the edgeloops while masking different layers.

Figure 12: Masking in the metal section of the ship's thrusters by following existing edgeloops using Substance Painter's Polygon Fill tool.

Shading the Ship

For the previous Art Challenge, I used a combination of PxrDisney and PxrSurface shaders; this time around, in order to get a better understanding of how PxrSurface works, I opted to go all-in on using PxrSurface for everything in the scene. Also, for the rain streaks effect (discussed later in this post), I needed some features that are available in the extended Disney Bsdf model [Burley 2015] and in PxrSurface [Hery and Ling 2017], but RenderMan 23 only implements the base Disney Brdf [Burley 2012] without the extended Bsdf features; this basically meant I had to use PxrSuface.

One of the biggest differences I had to adjust to was how metallic color is controlled in PxrSurface. The Disney Bsdf drives the diffuse color and metallic color using the same base color parameter and shifts energy between the diffuse/spec and metallic lobes using a “metallic” parameter, but PxrSurface separates the diffuse and metallic colors entirely. PxrSurface uses a “Specular Face Color” parameter to directly drive the metallic lobe and has a separate “Specular Edge Color” control; this parameterization reminds me a lot of Framestore’s artist-friendly metallic fresnel parameterization [Gulbrandsen 2014], but I don’t know if this is actually what PxrSurface is doing under the hood. PxrSurface also has two different modes for its specular controls: an “artistic” mode and a “physical” mode; I only used the artistic mode. To be honest, while PxrSurface’s extensive controls are extremely powerful and offer an enormous degree of artistic control, I found trying to understand what every control did and how they interacted with each other to be kind of overwhelming. I wound up paring back the set of controls I used back to a small subset that I could mentally map back to what the Disney Bsdf or VRayMtl or Autodesk Standard Surface [Georgiev et al. 2019] models do.

Fortunately, converting from the Disney Bsdf’s baseColor/metallic parameterization to PxrSurface’s diffuse/specFaceColor is very easy:

\[ diffuse = baseColor * (1 - metallic) \\ specFaceColor = baseColor * metallic \]

The only gotcha to look out for is that everything needs to be in linear space first. Alternatively, Substance Painter already has a output template for PxrSurface as well. Once I had the maps in the right parameterization, for the most part all I had to do was plug the right maps into the right parameters in PxrSurface and then make minor manual adjustments to dial in the look. In addition to two different specular parameterization modes, PxrSurface also supports choosing from a few different microfacet models for the specular lobes; by default PxrSurface is set to use the Beckmann model [Beckmann and Spizzichino 1963], but I selected the GGX model [Walter et al. 2007] for everything in this scene since GGX is what I’m more used to.

For the actual look of the ship, I didn’t want to go with the dilapidated look that a lot of the other contestants went with. Instead, I wanted the ship to look like it was a well maintained working vehicle, but with all of the grime and scratches that build up over daily use. So, there are scratches and dust and dirt streaks on the boat, but nothing is actually rusting. I also did modeled some glass for the windows at the top of the tower superstructure, and added some additional lamps to the top of the ship’s masts and on the tower superstructure for use in lighting later. After getting everything dialed, here is the “dry” look of the ship:

Figure 13: Fully shaded "dry" look for the ship.

Here’s a close-up render of the back engine section of the ship, which has all kinds of interesting bits and bobs on it. The engine exhaust kind of looks like it could be a volume, but it’s not. I made the engine exhaust by making a bunch of cards, arranging them into a truncated cone, and texturing them with a blue gradient in the diffuse slot and a greyscale gradient in PxrSurface’s “presence” slot. The glow effect is done using the glow parameter in PxrSurface. The nice thing about using this more cheat-y approach instead of a real volume is that it’s way faster to render!

Figure 14: Fully shaded "dry" look for the back engine area of the ship.

Most of the ship’s metal components are covered over using a black, semi-matte paint material, but in areas that I thought would be subjected to high temperatures, such as exhaust vents or the inside of the thrusters or the many floodlights on the ship, I chose to use a beaten copper material instead. Basically wherever I wound up placing a practical light, the housing around the practical light is made of beaten copper. Well, I guess it’s actually some kind of high-temperature copper alloy or copper-colored composite material, since real copper’s melting point is lower than real steel’s melting point. The copper color had an added nice effect of making practical lights look more yellow-orange, which I think helps sell the look of engine thrusters and hot exhaust vents more.

Each exhaust vent and engine thruster actually contains two practical lights: one extremely bright light near the back of the vent or thruster pointing into the vent or thruster, and one dimmer but more saturated light pointing outwards. This setup produces a nice effect where areas deeper into the vent or thruster look brighter and yellower, while areas closer to the outer edge of the vent or thruster look a bit dimmer and more orange. The light point outwards also casts light outside of the vent or thruster, providing some neat illumination on nearby surfaces or volumes. Later in this post, I’ll write more about how I made use of this in the final image.

Figure 15: Wide view of the back of the ship, showing the practical lights in the ship's various engine thrusters and exhaust vents.

Here’s a turntable video of the ship, showcasing all of the texturing and shading that I did. I had a lot of fun taking care of all of the tiny details that are part of the ship, even though many of them aren’t actually visible in my final image. The dripping wet rain effect is discussed later in this post.

Figure 16: Turntable of the ship showing both dry and wet variants.

Shading and Texturing the Robots

For the robots, I used the same Substance Painter based texturing workflow and the same PxrSurface based shading workflow that I used for the ship. However, since the robot has far fewer components than the ship, I was able to bring all of the robot’s UDIM tiles into Substance Painter at once. The main challenge with the robots wasn’t the sheer quantity of parts that had to be textured, but instead was in the variety of robot color schemes that had to be made. In order to populate the scene and give my final image a sense of life, I wanted to have a lot of robots on the ships, and I wanted all of the robots to have different paint and color schemes.

I knew from an early point that I wanted the robot carrying the suitcase to be yellow, and I knew I wanted a robot in some kind of conductor’s uniform, but aside from that, I didn’t much pre-planned for the robot paint schemes. As a result, coming up with different robot paint schemes was a lot of fun and involved a lot of just goofing around and improvisation in Substance Painted until I found ideas that I liked. To help unify how all of the robots looked and to help with speeding up the texturing process, I came up with a base metallic look for the robot’s legs and arms and various functional mechanical parts. I alternated between steel and copper parts to help bring some visual variety to all of the mechanical parts. The metallic parts are the same across all of the robots; the parts that vary between robots are the body shell and various outer casing parts on the arms:

Figure 17: Robot with steel and copper mechanical parts and yellow outer shell.

I wanted very different looks for the other two robots that are on the dock with the yellow robot. I gave one of them a more futuristic looking white glossy shell with a subtle hexagon imprint pattern and red accents. The hexagon imprint pattern is created using a hexagon pattern in the normal map. The red stripes use the same edgeloop-following technique that I used for masking some layers on the ship. I made the other robot a matte green color, and I thought it would be fun make him into a sports fan. He’s wearing the logo and colors of the local in-world sports team, the Seneca Senators! Since the robots don’t wear clothes per se, I guess maybe the sports team logo and numbers are some kind of temporary sticker? Or maybe this robot is such a bit fan that he had the logo permanently painted on… I don’t know! Since I knew these two robots would be seen from the back in the final image, I made sure to put all of the interesting stuff on their sides and back.

Figure 18: Futuristic robot with glossy white outer shell and red accents.

Figure 19: Sports fan robot wearing the colors of the in-world team, the Seneca Senators.

For the conductor robot, I chose a blue and gold color scheme based on real world conductor uniforms I’ve seen before. I made the conductor robot overall a bit more cleaned up compared to the other robots, since I figured the conductor robot should look a bit more crisp and professional. I also gave the conductor robot a gold mustache, for a bit of fun! To complete the look, I modeled a simple conductor’s hat for the conductor robot to wear. I also made a captain robot, which has a white/black/gold color scheme derived from the conductor robot. The white/black/gold color scheme is based on old-school ship’s captain uniforms. The captain robot required a bit of a different hat from the conductor hat; I made the captain hat a little bigger and a little bit more elaborate, complete with gold stitching on the front around the Seneca Metro emblem. In the final scene you don’t really see the captain robots, since they wound up inside of the wheelhouse at the top of the ship’s tower superstructure, but hey, at least the captain robots were fun to make, and at least I know that they’re there!

Figure 20: Conductor robot with a blue and gold color scheme and a hat!

Figure 21: Captain robot with a white and black and gold color scheme and an even fancier hat.

As a bit of a joke, I tried making a poncho for one of the robots. I thought it would look very silly, which for me was all the more reason to try! To make the poncho, I made a big flat disc in Maya and turned it into nCloth, and just let it fall onto the robot with the robot’s geometry acting as a static collider. This approach basically worked out-of-the-box, although I made some manual edits to the geometry afterwards just to get the poncho to billow a bit more on the bottom. The poncho’s shader is a simple glass PxrSurface shader, with the bottom frosted section and smooth diamond-shaped window section both driven using just roughness. The crinkly plastic sheet appearance is achieved entirely through a wrinkle normal map. The poncho bot is also not really visible in the final image, but somewhere in the final image, this robot is in the background on the deck of the front ship behind some other robots!

Figure 22: Robot wearing a clear plastic poncho.

Don’t worry, I didn’t forget about the fact that the robots have antennae! For the poncho robot, I modeled a hole into the poncho for the antenna to pass through, and I modeled similar holes into the captain robot and conductor robot’s hats as well. Again, this is a detail that isn’t visible in the final image at all, but is there mostly just so that I can know that it’s there:

Figure 23: Antenna pass-through hole modeled into the poncho.

In total I created 12 different unique robot variants, which some variants duplicated in the final image. All 12 variants are actually present in the scene! Most of them are in the background (and a few variants are only on the background ship), so most of them aren’t very visible in the final image. You, the reader, have probably noticed a theme in this post now where I put a lot of effort into things that aren’t actually visible in the final image… for me, a large part of this project wasn’t necessarily about the final image and was instead just about having fun and getting some practice with the tools and workflows.

Here is a turntable showcasing all 12 robot variants. In the turntable, only the yellow robot has both a wet and dry variant, since all of the other robots in the scene remembered their umbrellas and were therefore able to stay dry. The green sports fan robot does have a variant with a wet right arm though, since in the final image the green sports fan robot’s right arm is extended beyond the umbrella to wave at the incoming ship.

Figure 24: Turntable of the robots, with all 12 robot variants.

The Wet Shader

Going into the shading process, the single problem that worried me the most was how I was going to make everything in the rain look wet. Having a good wet look is extremely important for selling the overall look of a rainy scene. I actually wasn’t too worried about the base dry shading, since hard metal/plastic surfaces are one of the things that CG is really good at by default. By contrast, getting a good wet rainy look took an enormous amount of experimentation and effort, and wound up even involving some custom tools.

From a cursory search online, I found some techniques for creating a wet rainy look that basically work by modulating the primary specular lobe and applying a normal map to the base normal of the surface. However, I didn’t really like how this looked; in some cases, this approach basically makes it look like the underlying surface itself has rivulets and dots in it, not like there’s water running on top of the surface. My hunch was to use PxrSurface’s clearcoat lobe instead, since from a physically motivated perspective, water streaks and droplets behave more like an additional transparent refractive coating layer on top of a base surface. A nice bonus from trying to use the clearcoat lobe is that PxrSurface supports using different normal maps for each specular lobe; this way, I could have a specific water droplets and streaks normal map plugged into the bump normal parameter for the clearcoat lobe without having to disturb whatever normal map I had plugged into the bump normal parameter to the base diffuse and primary specular lobes. My idea was to create a single shading graph for creating the wet rainy look, and then plug this graph into the clearcoat lobe parameters for any PxrSurface that I wanted a wet appearance for. Here’s what the final graph looked like:

Figure 25: Shading graph for creating the wet rainy look. This graph plugs into the clearcoat parameters of any shader that I wanted to have a wet appearance.

In the graph above, note how the input textures are fed into PxrRemap nodes for ior, edge color, thickness, and roughness; this is so I can rescale the 0-1 range inputs from the textures to whatever they need to be for each parameter. The node labeled “mastercontrol” allows for disabling the entire wet effect by feeding 0.0 into the clearcoat edge color parameter, which effectively disables the clearcoat lobe.

Having to manually connect this graph into all of the clearcoat parameters in each PxrSurface shader I used was a bit of a pain. Ideally I would have preferred if I could have just plugged all of the clearcoat parameters into a PxrLayer, disabled all non-clearcoat lobes in the PxrLayer, and then plugged the PxrLayer into a PxrLayerSurface on top of underlying base layers. Basically, I wish PxrLayerSurface supported enabling/disabling layers on a per-lobe basis, but this ability currently doesn’t exist in RenderMan 23. In Disney’s Hyperion Renderer, we support this functionality for sparsely layering Disney Bsdf parameters [Burley 2015], and it’s really really useful.

There are only four input maps required for the entire wet effect: a greyscale rain rivulets map, a corresponding rain rivulets normal map, a greyscale droplets map, and a corresponding droplets normal map. The rivulets maps are used for the sides of a PxrRoundCube projection node, while the droplets maps are used for the top of the PxrRoundCube projection node; this makes the wet effect look more like rain drop streaks the more vertical a surface is, and more like droplets splashing on a surface the more horizontal a surface is. Even though everything in my scene is UV mapped, I chose to use PxrRoundCube to project the wet effect on everything in order to make the wet effect as automatic as possible; to make sure that repetitions in the wet effect textures weren’t very visible, I used a wide transition width for the PxrRoundCube node and made sure that the PxrRoundCube’s projection was rotated around the Y-axis to not be aligned with any model in the scene.

To actually create the maps, I used a combination of Photoshop and a custom tool that I originally wrote for Takua Renderer. I started in Photoshop by kit-bashing together stuff I found online and hand-painting on top to produce a 1024 by 1024 pixel square example map with all of the characteristics I wanted. While in Photoshop, I didn’t worry about making sure that the example map could tile; tiling comes in the next step. After initial work in Photoshop, this is what I came up with:

Figure 26: Initial kit-bashed / hand-painted exemplars for streak and droplet wet maps.

Next, to make the maps repeatable and much larger, I used a custom tool I previously wrote that implements a practical form of histogram-blending hex tiling [Burley 2019]. Hex tiling with histogram preserving blending, originally introduced by Heitz and Neyret [2018], is one of the closest things to actual magic in recent computer graphics research; using hex tiling instead of normal rectilinear tiling basically completely hides obvious repetitions in the tiling from the human eye, and the histogram preserving blending makes sure that hex tile boundaries blend in a way that makes them completely invisible as well. I’ll write more about hex tiling and make my implementation publicly available in a future post. What matters for this project is hex tiling allowed me to convert my exemplar map from Photoshop into a much larger 8K seamlessly repeatable texture map with no visible repetition patterns. Below is a cropped section from each 8K map:

Figure 27: Crops from the 8K wet maps generated from the exemplar maps using my custom implementation of histogram-blending hex tiling.

For the previous Art Challenge, I also made some custom textures that had to be tileable. Last time though, I used Substance Designer to make the textures tileable, which required setting up a big complicated node graph and produced results where obvious repetition was still visible. Conversely, hex tiling basically works automatically and doesn’t require any kind of manual setup or complex graphs or anything.

To generate the normal maps, I used Photoshop’s “Generate Normal Map” filter, which is found under “Filter > 3D”. For generating normal maps from simple greyscale heightmaps, this Photoshop feature works reasonably well. Because of the deterministic nature of the hex tiling implementation though, I could have also generated normal maps from the grey scale exemplars and then fed the normal map exemplars through the hex tiling tool with the same parameters as how I fed in the greyscale maps, and I would have gotten the same result as below.

Figure 28: Crops from the 8K wet map normals generated using Photoshop's "Generate Normal Map" filter tool.

For the wet effect’s clearcoat lobe, I chose to use the physical mode instead of the artistic mode (unlike for the base dry shaders, where I only used the artistic mode). The reason I used the physical mode for the wet effect is because of the layer thickness control, which darkens the underlying base shader according to how thick the clearcoat layer is supposed to be. I wanted this effect, since wet surfaces appear darker than their dry counterparts in real life. Using the greyscale wet map, I modulated the layer thickness control according to how much water there was supposed to be at each part of the surface.

Finally, after wiring everything together in Maya’s HyperShade editor, everything just worked! I think the wet look my approach produces looks reasonable convincing, especially from the distances that everything is from the camera in my final piece. Up close the effect still holds up okay, but isn’t as convincing as using real geometry for the water droplets with real refraction and caustics drive by manifold next event estimation [Hanika et al. 2015]. In the future, if I need to do close up water droplets, I’ll likely try an MNEE based approach instead; fortunately, RenderMan 23’s PxrUnified integrator already comes with an MNEE implementation as an option, along with various other strategies for handling caustic cases [Hery et al. 2016]. However, the approach I used for this project is far cheaper from a render time perspective compare to using geometry and MNEE, and from a mid to far distance, I’m pretty happy with how it turned out!

Below are some comparisons of the ship and robot with and without the wet effect applied. The ship renders are from the same camera angles as in Figures 13, 14, and 15. drag the slider left and right to compare:

Figure 29: Wide view of the ship with (left) and without (right) the wet shader applied. For a full screen comparison, click here.

Figure 30: Back view of the ship with (left) and without (right) the wet shader applied. For a full screen comparison, click here.

Figure 31: Side view of the ship with (left) and without (right) the wet shader applied. For a full screen comparison, click here.

Figure 32: Main yellow robot with (left) and without (right) the wet shader applied. For a full screen comparison, click here.

Additional Props and Set Elements

In addition to texturing and shading the flying scifi ship and robot models, I had to create from scratch several other elements to help support the story in the scene. By far the single largest new element that had to be created was the entire dock structure that the robots stand on top of. As mentioned earlier, I wound up modeling the dock to a fairly high level of detail; the dock model contains every single bolt and rivet and plate that would be necessary for holding together a similar real steel frame structure. Part of this level of detail is justifiable by the fact that the dock structure is in the foreground and therefore relatively close to camera, but part of having this level of detail is just because I could and I was having fun while modeling. To model the dock relatively quickly, I used a modular approach where I first modeled a toolkit of basic reusable elements like girders, connection points, bolts, and deckboards. Then, from these basic elements, I assembled larger pieces such as individual support legs and crossbeams and such, and then I assembled these larger pieces into the dock itself.

Shading the dock was relatively fast and straightforward; I created a basic galvanized metal material and applied it using a PxrRoundCube projection. To get a bit more detail and break up the base material a bit, I added a dirt layer on top that is basically just low-frequency noise multiplied by ambient occlusion. I did have to UV map the gangway section of the dock in order to add the yellow and black warning stripe at the end of the gangway; however, since the dock is made up almost entirely of essentially rectangular prisms oriented at 90 degree angles to each other, just using Maya’s automatic UV unwrapping provided something good enough to just use as-is. The yellow and black warning stripe uses the same thick worn paint material that the warning stripes on the ship uses. On top of all of this, I then applied my wet shader clearcoat lobe.

Figure 33: Shading test for the dock, with wet effect applied. The lampposts are in a different orientation compared to where they are in the final scene.

The metro sign on the dock is just a single rectangular prism with a dark glass material applied. The glowing text is a color texture map plugged into PxrSurface’s glow parameter; whereever there is glowing text, I also made the material diffuse instead of glass, with the diffuse color matching the glow color. To balance the intensity of the glow, I had to cheat a bit; turning the intensity of the glow down enough so that the text and colors read well means that the glow is no longer bright enough to show up in reflections or cast enough light to show up in a volume. My solution was to turn down the glow in the PxrSurface shader, and then add a PxrRectLight immediately in front of the metro sign driven by the same texture map. The PxrRectLight is set to be invisible to the camera. I suppose I could have done this in post using light path expressions, but cheating it this way was simpler and allowed for everything to just look right straight out of the render.

Figure 34: Closeup test of the metro sign on the dock.

The suitcase was a really simple prop to make. Basically it’s just a rounded cube with some extra bits stuck on to it for the handles and latch; the little rivets are actually entirely in shading and aren’t part of the geometry at all. I threw on a basic burlap material for the main suitcase, multiplied on some noise to make it look a bit dirtier and worn, and applied basic brass and leather materials to the latch and handle, and that was pretty much it. Since the suitcase was going to serve as the yellow robot’s makeshift umbrella, making sure that the suitcase looked good with the wet effect applied turned out to be really important. Here’s a lookdev test render of the suitcase, with and without the wet effect applied (slide left and right to compare):

Figure 35: Suitcase with (left) and without (right) the wet shader applied. For a full screen comparison, click here.

From early on, I was fairly worried about making the umbrellas look good; I knew that making sure the the umbrellas looked convincingly wet was going to be really important for selling the overall rainy day setting. I originally was going to make the umbrellas opaque, but realized that opaque umbrellas were going to cast a lot of shadows and block out a lot of parts of the frame. Switching to transparent umbrellas made out of clear plastic helped a lot with brightening up parts of the frame and making sure that large parts of the ship weren’t completely blocked out in the final image. As a bonus, I think the clear umbrellas also help the overall setting feel slightly more futuristic. I modeled the umbrella canopy as a single-sided mesh, so the “thin” setting in PxrSurface’s glass parameters was really useful here. Since the umbrella canopy is transparent with refraction roughness, having the wet effect work through the clearcoat lobe proved really important here since doing so allowed for the rain droplets and rivulets to have sharp specular highlights while simultaneously preserving the more blurred refraction in the underlying umbrella canopy material. In the end, lighting turned out to be really important for selling the look of the wet umbrella as well; I found that having tons of little specular highlights coming from all of the rain drops helped a lot.

As a bit of an aside, settling on a final umbrella canopy shape took a surprising amount of time! I started with a much flatter umbrella canopy, but eventually made it more bowed after looking at various umbrellas I have sitting around at home. Most clear umbrella references I found online are of these Japanese bubble umbrellas which are actually far more bowed than a standard umbrella, but I wanted a shape that more closely matched a standard opaque umbrella.

One late addition I made to the umbrella was the small lip at the bottom edge of the umbrella canopies; for much of the development process, I didn’t have this small lip and kept feeling like something was off about the umbrellas. I eventually realized that some real umbrellas have a bit of a lip to help catch and guide water runoff; adding this feature to the umbrellas helped them feel a bit more correct.

Figure 36: Lookdev test of the umbrella, with wet effect applied.

Shortly before the due date for the final image, I made a last-minute addition to my scene: I took the sextant that came with Pixar’s base models and made the white/red robot on the dock hold it. Since the green and yellow robots were both doing something a bit more dynamic than just standing around, I wanted the middle white/red robot to be doing something as well. Maybe the white/red robot is going to navigation school! I did a very quick-and-dirty shading job on the sextant using Maya’s automatic UVs; overall the sextant prop is not shaded to the same level of detail as most of the other elements in my scene, but considering how small the sextant is in the final image, I think it holds up okay. I still tried to add a plausible amount of wear and age to the metal materials on the sextant, but I didn’t have time to put in carved numbers and decals and grippy textures and stuff. There are also a few small areas where you can see visible texture stretching at UV seams, but again, in the final image, it didn’t matter too much.

Figure 37: Quick n' dirty lookdev test of the sextant. Model is by Aliyah Chen and was provided by Pixar as one of the contest's base models.

Rain FX

Having a good wet surface look was one half of getting my scene to look convincingly rainy; the other major problem to solve was making the rain itself! My initial, extremely naive plan was to simulate all of the rainfall as one enormous FLIP sim in Houdini. However, I almost immediately realized what a bad idea that was, due to the scale of the scene. Instead, I opted to simulate the rain as nParticles in Maya.

To start, I first duplicated all of the geometry that I wanted the rain to interact with, combined it all into one single huge mesh, and then decimated the mesh heavily and simplified as much as I could. This single mesh acted as a proxy for the full scene for use as a passive collider in the nParticles network. Using a decimated proxy for the collider instead of the full scene geometry was very important for making sure that the sim ran fast enough for me to be able to get in a good number of different iterations and attempts to find the look that I wanted. I mostly picked geometry that was upward facing for use in the proxy collider:

Figure 38: The proxy mesh I used for the rain nParticles sim. This is an earlier version of the proxy mesh before I settled on final scene geometry; the final sim was run with an updated proxy mesh made from the final scene geometry.

Next, I set up a huge volume nParticle emitter node above the scene, covering the region visible in the camera frustum. The only forces I set up were gravity and a small amount of wind, and then I ran the nParticles system and let it run until rain had filled all parts of the scene visible to the camera. To give the impression of fast moving motion-blurred rain droplets, I set the rendering mode of the nParticles to ‘multistreak’, which makes each particle look like a set of lines with lengths varying according to velocity. I had to play with the collider proxy mesh’s properties a bit to get the right amount of raindrops bouncing off of surfaces and to dial in how high raindrops bounced. I initially tried allowing particles to collide with each other as well, but this slowed the entire sim down to basically a halt, so for the final scene I have particle-to-particle collision disabled.

After a couple of rounds of iteration, I started getting something that looked reasonably like rain! Using the proxy collision geometry wa really useful for creating “rain shadows”, which are areas that rain isn’t present due to being stopped by something else. I also tuned the wind speed a lot in order to get rain particles bouncing off of the umbrellas to look like they were being blown aside in the wind. After getting a sim that I liked, I baked out the frame of the sim that I wanted for my final render using Maya’s nCache system, which caches the nParticle simulation to disk so that it can be rapidly loaded up later without having to re-run the entire simulation.

Figure 39: Closeup of a work-in-progress version of the rain sim. Note how the umbrellas properly block rain from falling on the robots under the umbrellas.

To add just an extra bit of detail and storytelling, near the end of the competition period I revisited my original idea for making the rain in Houdini using a FLIP solver. I wanted to add in some “hero” rain drops around the foreground robots, running off of their umbrellas and suitcases and stuff. To create these “hero” droplets, I brought the umbrella canopies and suitcase into Houdini and built a basic FLIP simulation, meshed the result, and brought it back into Maya to integrate back into the scene.

Figure 40: Using a FLIP simulation in Houdini to create some "hero" rain droplets running off of the umbrella canopies and suitcase.

Dialing in the look of the rain required a lot of playing with both the width of the rain drop streaks and with the rain streak material. I was initially very wary of making the rain in my scene heavy, since I was concerned about how much a heavy rain look would prevent me from being able to pull good detail and contrast from the ships. However, after some successful initial tests, I felt a bit more confident about a heavier rain look. I took the test from yesterday with more rain, and tried increasing the amount of rain by around 10x. I originally started working on the sim with only around a million particles, but by the end I had bumped up the particle count to around 10 million. In order to prevent the increased amount of rain from completely washing out the scene, I made each rain drop streak on the thinner and shorter side, and also tweaked the material to be slightly more forward scattering. My rain material is basically a mix of a rough glass and grey diffuse, with the reasoning being rain needs to be a glass material since rain is water, but since the rain droplet streaks are meant to look motion blurred, throwing in some diffuse just helps them show up better in camera; making the rain material more forwards scattering in this case just means changing the ratio of glass/diffuse to be more glass. I eventually arrived at a ratio of 60% diffuse light grey to 40% glass, which I found helped the rain show up in the camera and catch light a bit better. I also used the “presence” parameter (which is really just opacity) in PxrShader to make final adjustments to balance how visible the rain was with how much it was washing out other details. For the “hero” droplets, I used a completely bog-standard glass material.

Figuring out how to simulate the rain and make it look good was by far the single largest source of worries for me in this whole project, so I was incredibly relieved at the end when it all came together and started looking good. Here’s a 2K crop from my final image showing the “hero” droplets and all of the surrounding rain streaks around the foreground robots.

Figure 41: 2K crop showing "hero" droplets and rain streaks.

Lighting and Compositing

Lighting this scene proved to be very interesting and very different from what I did for the previous challenge! Looking back, I think I actually may have “overlit” the scene in the previous challenge; I tend to prefer a slightly more naturalistic look, but while in the thick of lighting, it’s easy to get carried away and push things far beyond the point of looking naturalistic. Another aspect of this scene that it made it very different from anything I’ve tried before is both the sheer number of practical lights in the scene and the fact that practical lights are the primary source of all lighting in this scene!

The key lighting in this scene is provided by the overhead lampposts on the dock, which illuminate the foreground robots. I initially had a bunch of additional invisible PxrRectLights providing additional illumination and shaping on the robots, but I got rid of all of them and in the final image I relied only on the actual lights on the lampposts. To prevent the visible light surfaces themselves from blowing out an aliasing, I used two lights for every lamppost: one visible-to-camera PxrRectLight set to a low intensity that wouldn’t alias in the render, and one invisible-to-camera PxrRectLight set to a relatively higher intensity for providing the actual lighting. The visible-to-camera PxrRectLight is rendered out as the only element on a separate render layer, which can then be added back in to the main key lighting render layer.

To better light the ships, I added a number of additional floodlights to the ship that weren’t part of the original model; you can see these additional floodlights mounted on top of the various masts of the ships and also on the sides of the tower superstructure. These additional floodlights illuminate the decks of the ships and help provide specular highlights to all of the umbrellas on the deck of the foreground ship, which enhances the rainy water droplet covered look. For the foreground robots on the dock, the ship floodlights also act as something of a rim light. Each of the ship floodlights is modeled as a visible-to-camera PxrDiscLight behind a glass lens with a second invisible-to-camera PxrDiscLight in front of the glass lens. The light behind the glass lens is usually lower in intensity and is there to provide the in-camera look of the physical light, while the invisible light in front of the lens is usually higher in intensity and provides the actual illumination in the scene.

In general, one of the major lessons I learned on this project was that when lighting using practical lights that have to be be visible in camera, a good approach is to use two different lights: one visible-to-camera and one invisible-to-camera. This approach allows for separating how the light itself looks versus what kind of lighting it provides.

The overall fill lighting and time of day is provided by the skydome, which is of an overcast sky at dusk. I waffled back and forth for a while between a more mid-day setting versus a dusk setting, but eventually settled on the dusk skydome since the overall darker time of day allows the practical lights to stand out more. I think allowing the background trees to fade almost completely to black actually helps a lot in keeping the focus of the image on the main story elements in the foreground. One feature of RenderMan 23 that really helped in quickly testing different lighting setups and iterating on ideas was RenderMan’s IPR mode, which has come a long way since RendermMan first moved to path tracing. In fact, throughout this whole project, I used the IPR mode extensively for both shading tests and for the lighting process. I have a lot of thoughts about the huge, compelling improvements to artist workflows that will be brought by even better interactivity (RenderMan XPU is very exciting!), but writing all of those thoughts down is probably better material for a different blog post in the future.

In total I had five lighting render layers: the key from the lampposts, the foreground rim and background fill from the floodlights, overall fill from the skydome, and two practicals layers for the visible-to-camera parts of all of the practical lights. Below are the my lighting render layers, although with the two practicals layers merged:

Figure 42: Final render, lampposts key lighting pass.

Figure 43: Final render, floodlights lighting pass.

Figure 44: Final render, sky fill lighting pass.

Figure 45: Final render, practical lights lighting pass.

I used a number of PxrRodLightFilters to knock down some distractingly bright highlights in the scene (especially on the foreground robots’ umbrellas in the center of the frame). As a rendering engineer, rod light filters are a constant source of annoyance due to the sampling problems they introduce; rods allow for arbitrarily increasing or decreasing the amount of light going through an area, which throws off energy conservation, which can mess up importance sampling strategies that depend on a degree of energy conservation. However, as a user, rod light filters have become one of my favorite go-to tools for shaping and adjusting lighting on a local basis, since they offer an enormous amount of localized artistic control.

To convey the humidity of a rainstorm and to provide volumetric glow around all of the practical lights in the scene, I made extensive use of volume rendering on this project as well. Every part of the scene visible in-camera has some sort of volume in it! There are generally two types of volumes in this scene: a group of thinner, less dense volumes to provide atmospherics, and then a group of thicker, denser “hero” volumes that provide some of the more visible mist below the foreground ship and swirling around the background ship. All of these volumes are heterogeneous volumes brought in as VDB files.

One odd thing I found with volumes was some major differences in sampling behavior between RenderMan 23’s PxrPathtracer and PxrUnified integrators. I found that by default, whenever I had a light that was embedded in a volume, areas in the volume near the light were extremely noisy when rendered using PxrUnified but rendered normally when using PxrPathtracer. I don’t know enough about the details of how PxrUnified and PxrPathtracer’s volume integration [Fong et al. 2017] approaches differ, but it almost looks to me like PxrPathtracer is correctly using RenderMan’s equiangular sampling implementation [Kulla and Fajardo 2012] in these areas and PxrUnified for some reason is not. As a result, for rendering all volume passes I relied on PxrPathtracer, which did a great job with quickly converging on all passes.

An interesting unintended side effect of filling the scene with volumes was in how the volumes interacted with the orange thruster and exhaust vent lights. I had originally calibrated the lights in the thrusters and exhaust vents to provide an indication of heat coming from those areas of the ship without being so bright as to distract from the rest of the image, but the orange glows these lights produced in the volumes made the entire bottom of the image orange, which was distracting anyway. As a result, I had to re-adjust the orange thruster and exhaust vent lights to be considerably dimmer than I had originally had them, so that when interacting with the volumes, everything would be brought up to the apparent image-wide intensity that I had originally wanted.

In total I had eight separate render passes for volumes; each of the consolidated lighting passes from above had two corresponding volume passes. Within the two volume passes for each consolidated lighting pass, one volume pass was for the atmospherics and one was for the heavier mist and fog. Below are the volume passes consolidated into four images, with each image showing both the atmospherics and mist/fog in one image:

Figure 46: Final render, lampposts key volumes combined passes.

Figure 47: Final render, floodlights volumes combined passes.

Figure 48: Final render, sky fill volumes combined passes.

Figure 49: Final render, practical lights volumes combined passes.

One final detail I added in before final rendering was to adjust the bokeh shape to something more interesting than a uniform circle. RenderMan 23 offers a variety of controls for customizing the camera’s aperture shape, which in turn controls the bokeh shape when using depth of field. All of the depth of field in my final image is in-render, and because of all of the tiny specular hits from all of the raindrops and from the wet shader, there is a lot of visible bokeh going on. I wanted to make sure that all of this bokeh was interesting to look at! I picked a rounded 5-bladed aperture with a significant amount of non-uniform density (that is, the outer edges of the bokeh are much brighter than the center core).

For final compositing, I used a basic Photoshop and Lightroom workflow like I did in the previous challenge, mostly because Photoshop is a tool I already know extremely well and I don’t have Nuke at home. I took a relatively light-handed approach to compositing this time around; adjustments to layers were limited to just exposure adjustments. All of the layers shown above already have the exposure adjustments I made baked in. After making adjustments in Photoshop and flattening out to a single layer, I then brought the image into Lightroom for final color grading. For the final color grade, I tried push the overall look to be a bit moodier and a bit more contrast-y, with the goal of having the contrast further draw the viewer’s eye to the foreground robots where the main story is. Figure 50 is a gif that visualizes the compositing process for my final image by showing how all of the successive layers are added on top of each other. Figure 51 shows what all of the lighting, comp, and color grading looks like applied to a 50% grey clay shaded version of the scene, and if you don’t want to scroll all the way back to the top of this post to see the final image, I’ve included it again as Figure 52.

Figure 50: Animated breakdown of compositing layers.

Figure 51: Final lighting, comp, and color grading applied to a 50% grey clay shaded version. Click for 4K version.

Figure 52: Final image. Click for 4K version.

Conclusion

On a whole, I’m happy with how this project turned out! I think a lot of what I did on this project represents a decent evolution over and applies a lot of lessons learned on the previous RenderMan Art Challenge. I started this project mostly as an excuse to just have fun, but along the way I still learned a lot more, and going forward I’m definitely hoping to be able to do more pure art projects alongside my main programming and technical projects.

Here is a progression video I put together from all of the test and in-progress renders that I made throughout this entire project:

Figure 53: Progression reel made from test and in-progress renders leading up to my final image.

My wife, Harmony Li, deserves an enormous amount of thanks on this project. First off, the final concept I went with is just as much her idea as it is mine, and throughout the entire project she provided valuable critiques and suggestions and direction. As usual with the RenderMan Art Challenges, Leif Pederson from Pixar’s RenderMan group provided a lot of useful tips, advice, feedback, and encouragement as well. Many other entrants in the Art Challenge also provided a ton of support and encouragement; the community that has built up around the Art Challenges is really great and a fantastic place to be inspired and encouraged. Finally, I owe an enormous thanks to all of the judges for this RenderMan Art Challenge, because they picked my image for first place! Winning first place in a contest like this is incredibly humbling, especially since I’ve never really considered myself as much of an artist. Various friends have since pointed out that with this project, I no longer have the right to deny being an artist! If you would like to see more about my contest entry, check out the work-in-progress thread I kept on Pixar’s Art Challenge forum, and I also made an Artstation post for this project.

As a final bonus image, here’s a daylight version of the scene. My backup plan in case I wasn’t able to pull off the rainy look was to just go for a boring daylight setup; I figured that the lighting would be a lot more boring, but the additional visible detail would be an okay consolation prize for myself. Thankfully, the rainy look worked out and I didn’t have to go to my backup plan! After the contest wrapped up, I went back and made a daylight version out of curiosity:

Figure 54: Bonus image: daylight version. Click for 4K version.

References

Petr Beckmann and André Spizzichino. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon.

Brent Burley. 2012. Physically Based Shading at Disney. In ACM SIGGRAPH 2012 Course Notes: Practical Physically-Based Shading in Film and Game Production.

Brent Burley. 2015. Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering. In ACM SIGGRAPH 2015 Course Notes: Physically Based Shading in Theory and Practice.

Brent Burley. 2019. On Histogram-Preserving Blending for Randomized Texture Tiling. Journal of Computer Graphics Techniques. 8, 4 (2019), 31-53.

Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, Brenton Rayner, Jonathan Brouillat, and Max Liani. 2018. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics. 37, 3 (2018), 30:1–30:21.

Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold Next Event Estimation. Computer Graphics Forum. 34, 4 (2015), 87-97.

Eric Heitz and Fabrice Neyret. 2018. High-Performance By-Example Noise using a Histogram-Preserving Blending Operator. Proceedings of the ACM on Computer Graphics and Interactive Techniques. 1, 2 (2018), 31:1-31:25.

Christophe Hery and Junyi Ling. 2017. Pixar’s Foundation for Materials: PxrSurface and PxrMarschnerHair. In ACM SIGGRAPH 2017 Course Notes: Physically Based Shading in Theory and Practice.

Christophe Hery, Ryusuke Villemin, and Florian Hecht. 2016. Towards Bidirectional Path Tracing at Pixar. In ACM SIGGRAPH 2016 Course Notes: Physically Based Shading in Theory and Practice.

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production Volume Rendering. In ACM SIGGRAPH 2017 Courses.

Iliyan Georgiev, Jamie Portsmouth, Zap Andersson, Adrien Herubel, Alan King, Shinji Ogaki, Frederic Servant. 2019. Autodesk Standard Surface. Autodesk white paper.

Ole Gulbrandsen. 2014. Artistic Friendly Metallic Fresnel. Journal of Computer Graphics Techniques. 3, 4 (2014), 64-72.

Christopher Kulla and Marcos Fajardo. 2012. Important Sampling Techniques for Path Tracing in Participating Media. Computer Graphics Forum. 31, 4 (2012), 1519-1528.

Bruce Walter, Steve Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. In Rendering Techniques 2007 (Proceedings of the 18th Eurographics Symposium on Rendering), 195-206.

Shadow Terminator in Takua

I recently implemented two techniques in Takua for solving the harsh shadow terminator problem; I implemented both the Disney Animation solution [Chiang et al. 2019] that we published at SIGGRAPH 2019, and the Sony Imageworks technique [Estevez et al. 2019] published in Ray Tracing Gems. We didn’t show too many comparisons between the two techniques (which I’ll refer to as the Chiang and Estevez approaches, respectively) in our SIGGRAPH 2019 presentation, and we didn’t show comparisons on any actual “real-world” scenes, so I thought I’d do a couple of my own renders using Takua as a bit of a mini-followup and share a handful of practical implementation tips. For a recap of the harsh shadow terminator problem, please see either the Estevez paper or the slides from the Chiang talk, which both do excellent jobs of describing the problem and why it happens in detail. Here’s a small scene that I made for this post, thrown together using some Evermotion assets that I had sitting around:

Figure 1: A simple bedroom scene, rendered in Takua Renderer. This image was rendered using the Chiang 2019 shadow terminator solution.

In this scene, all of the blankets and sheets and pillows on the bed use a fabric material that uses extremely high-frequency, high-resolution normal maps to achieve the fabric-y fiber-y look. Because of these high-frequency normal maps, the bedding is susceptible to the harsh shadow terminator problem. All of the bedding also has diffuse transmission and a very slight amount of high roughness specularity to emulate the look of a sheen lobe, making the material (and therefore this comparison) overall more interesting than just a single diffuse lobe.

Since the overall scene is pretty brightly lit and the bed is lit from all directions either by direct illumination from the window or bounce lighting from inside of the room, the shadow terminator problem is not as apparent in this scene; it’s still there, but it’s much more subtle than in the examples we showed in our talk. Below are some interactive comparisons between renders using Chiang 2019, Estevez 2019, and no shadow terminator fix; drag the slider left and right to compare:

Figure 2: The bedroom scene rendered in Takua Renderer using Chiang 2019 (left) and no harsh shadow terminator fix (right). For a full screen comparison, click here.

Figure 3: The bedroom scene rendered in Takua Renderer using Chiang 2019 (left) and Estevez 2019 (right). For a full screen comparison, click here.

Figure 4: The bedroom scene rendered in Takua Renderer using no normal mapping (left) and normal mapping with no harsh shadow terminator fix (right). For a full screen comparison, click here.

If you would like to compare the 4K renders directly, they are located here: Chiang 2019, Estevez 2019, No Fix, No Normal Mapping. As mentioned above, due to this scene being brightly lit, differences between the two techniques and not having any harsh shadow terminator fix at all will be a bit more subtle. However, differences are still visible, especially in brighter areas of the blanket and white pillows. Note that in this scenario, the difference between Chiang 2019 and Estevez 2019 is fairly small, while the difference between using either shadow terminator fix and not having a fix is more apparent. Also note how both Chiang 2019 and Estevez 2019 produce results that come pretty close to matching the reference image with no normal mapping; this is good, since we would expect fix techniques to match the reference image more closely than not having a fix!

If we remove the bedroom set and put the bed onto more of a studio lighting setup with two area lights and a seamless grey backdrop, we can start seeing more prominent differences between the two techniques and between either technique and no fix. Seeing how everything plays out in this type of a lighting setup is useful, since this is the type of render that one often sees as part of a standard lookdev department’s workflow:

Figure 5: The bed in a studio lighting setup, rendered in Takua Renderer using Chiang 2019 (left) and no harsh shadow terminator fix (right). For a full screen comparison, click here.

Figure 6: The bed in a studio lighting setup, rendered in Takua Renderer using Chiang 2019 (left) and Estevez 2019 (right). For a full screen comparison, click here.

Figure 7: The bed in a studio lighting setup, rendered in Takua Renderer using no normal mapping (left) and normal mapping with no harsh shadow terminator fix (right). For a full screen comparison, click here.

If you would like to compare the 4K renders directly for the studio lighting setup, they are located here: Chiang 2019, Estevez 2019, No Fix, No Normal Mapping. In this setup, we can now see differences between the four images much more clearly. Compared to the no normal mapping reference, the render with no fix produces considerably more darkening on silhouettes, and the harsh sudden transition from bright to shadowed areas is much more apparent. In the render with no fix, the bedding suddenly looks a lot less soft and starts to look a little more like a hard solid surface instead of like fabric.

Chiang 2019 and Estevez 2019 both restore more of the soft fabric look by softening out the harsh shadow terminator areas, but the differences between Chiang 2019 and Estevez 2019 become more apparent and interesting in this setting. Chiang 2019 produces an overall softer look that has shadow terminators that more closely match the reference with no normal mapping, but Chiang 2019 produces a slightly darker look overall compared to Estevez 2019. Estevez 2019 doesn’t match the reference’s shadow terminators quite as closely as Chiang 2019, but manages to preserve more of the overall energy. In Figure 5 in the Chiang 2019 paper, we explain where this difference comes from: for small shading normal deviations, Estevez 2019 produces less shadowing than our method, whereas for larger shading normal deviations, Estevez 2019 produces more shadowing than our method. As a result, Estevez 2019 generally produces a higher contrast look compared to Chiang 2019.

All of these differences are more apparent in a close-up crop of the full 4K render. Here are comparisons of the same studio lighting setup from above, but cropped in; pay close attention to slightly right of center of the image, where the white blanket overhangs the edge of the bed:

Figure 8: Crop of the studio lighting setup render from earlier, using Chiang 2019 (left) and no harsh shadow terminator fix (right). For a larger comparison, click here.

Figure 9: Crop of the studio lighting setup render from earlier, using Chiang 2019 (left) and Estevez 2019 (right). For a larger comparison, click here.

Figure 10: Crop of the studio lighting setup render from earlier, using no normal mapping (left) and normal mapping with no harsh shadow terminator fix (right). For a larger comparison, click here.

Of course, the scenario that makes the harsh shadow terminator problem the most apparent is when there is a single strong light source and we are viewing the scene from an angle from which we can see areas where the light hits surfaces at a glancing angle. These types of lighting setups are often used for checking silhouettes and backlighting and whatnot in modeling and lookdev turntable renders. In the comparisons below, the differences are most noticeable in the folds and on the shadowed sides of all of the bedding:

Figure 11: The bed lit with a single very bright light, rendered in Takua Renderer using Chiang 2019 (left) and no harsh shadow terminator fix (right). For a full screen comparison, click here.

Figure 12: The bed lit with a single very bright light, rendered in Takua Renderer using Chiang 2019 (left) and Estevez 2019 (right). For a full screen comparison, click here.

Figure 13: The bed lit with a single very bright light, rendered in Takua Renderer using no normal mapping (left) and normal mapping with no harsh shadow terminator fix (right). For a full screen comparison, click here.

If you would like to compare the 4K renders directly for the single light source renders, they are located here: Chiang 2019, Estevez 2019, No Fix, No Normal Mapping. With a single light source, the differences between the four images are now very clear, since a single light setup produces strong contrast between the lit and shadowed parts of the image. The harsh shadow terminator problem is especially visible in the folds of the blanket, where we can see one side of the fold fully lit and one side of the fold in shadow (although because the bedding all has diffuse transmission, the harsh shadow terminator is still not as prevalent as it would be for a purely diffuse reflecting surface). Something else that is interesting is how the bedding with no shadow terminator fix overall appears slightly brighter than the bedding with no normal mapping; this is because the shading normals “bend” more light towards the light source. Chiang 2019 restores the overall brightness of the bedding back to something closer to the reference with no normal mapping but softens out more of the fine detail from the normal mapping, while Estevez 2019 preserves more of the fine details but has a brightness level closer to the render with no fix.

Just like in the studio lighting renders, differences become more apparent in close-up crops of the full 4K render. Here are some cropped in comparisons, this time centered more on the top of the bed than on the edge. In these crops, the glancing light angles make the shadow terminators more apparent in the folds of the blankets and such:

Figure 14: Crop of the single light render from earlier, using Chiang 2019 (left) and no harsh shadow terminator fix (right). For a larger comparison, click here.

Figure 15: Crop of the single light render from earlier, using Chiang 2019 (left) and Estevez 2019 (right). For a larger comparison, click here.

Figure 16: Crop of the single light render from earlier, using no normal mapping (left) and normal mapping with no harsh shadow terminator fix (right). For a larger comparison, click here.

In the end, I don’t think either approach is better than the other, and from a physical basis there really isn’t a “right” answer since nothing about shading normals is physical to begin with; I think it’s up to a matter of personal preference and the requirements of the art direction on a given project. Our artists at Walt Disney Animation Studios generally prefer the look of Chiang 2019 because of the lighting setups they usually work with, but I know that other artists prefer the look of Estevez 2019 because they have different requirements to meet.

Fortunately, both Chiang 2019 and Estevez 2019 are both really easy to implement! Both techniques can be implemented in a handful of lines of code, and are easy to apply to any modern physically based shading model. We didn’t actually include source code in our SIGGRAPH talk, mostly because we figured that translating the math from our short paper into code should be very straightforward and thus, including source code that is basically a direct transcription of the math into C++ would almost be insulting to the intelligence of the reader. However, since then, I’ve gotten a surprising number of emails asking for source code, so here’s the math and the corresponding C++ code from my implementation in Takua Renderer. Let G’ be the additional shadow terminator term that we will multiply the Bsdf result with:

\[ G = \min\bigg[1, \frac{\langle\omega_g,\omega_i\rangle}{\langle\omega_s,\omega_i\rangle\langle\omega_g,\omega_s\rangle}\bigg] \]
\[ G' = - G^3 + G^2 + G \]
float calculateChiang2019ShadowTerminatorTerm(const vec3& outputDirection,
                                              const vec3& shadingNormal,
                                              const vec3& geometricNormal) {
    float NDotL = max(0.0f, dot(shadingNormal, outputDirection));
    float NGeomDotL = max(0.0f, dot(geometricNormal, outputDirection));
    float NGeomDotN = max(0.0f, dot(geometricNormal, shadingNormal));
    if (NDotL == 0.0f || NGeomDotL == 0.0f || NGeomDotN == 0.0f) {
        return 0.0f;
    } else {
        float G = NGeomDotL / (NDotL * NGeomDotN);
        if (G <= 1.0f) {
            float smoothTerm = -(G * G * G) + (G * G) + G; // smoothTerm is G' in the math
            return smoothTerm;
        }
    }
    return 1.0f;
}

That’s all there is to it! Source code for Estevez 2019 is provided as part of the Ray Tracing Gems Github repository, but for the sake of completeness, my implementation is included below. My implementation is just the sample implementation streamlined into a single function:

float calculateEstevez2019ShadowTerminatorTerm(const vec3& outputDirection,
                                               const vec3& shadingNormal,
                                               const vec3& geometricNormal) {
    float cos_d = min(abs(dot(geometricNormal, shadingNormal)), 1.0f);
    float tan2_d = (1.0f - cos_d * cos_d) / (cos_d * cos_d);
    float alpha2 = clamp(0.125f * tan2_d, 0.0f, 1.0f);

    float cos_i = max(abs(dot(geometricNormal, outputDirection)), 1e-6f);
    float tan2_i = (1.0f - cos_i * cos_i) / (cos_i * cos_i);
    float spi_shadow_term = 2.0f / (1.0f + sqrt(1.0f + alpha2 * tan2_i));
    return spi_shadow_term;
}

Finally, I have a handful of small implementation notes. First, to apply either Chiang 2019 or Estevez 2019 to your existing physically based shading model, just multiply the additional shadow terminator term with the contribution for each lobe that needs adjusting. Technically speaking G’ is an adjustment to the G shadowing term in a standard microfacet model, but multiplying there versus multiplying with the overall lobe contribution works out to be the same thing. If your Bsdf supports multiple shading normals for different specular lobes, you’ll need to calculate a separate shadow terminator term for each shading normal. Second, note that both Chiang 2019 and Estevez 2019 are described with respect to unidirectional path tracing from the camera. This frame of reference is very important; both techniques work specifically based on the outgoing direction being the direction towards a potential light source, meaning that this technique actually isn’t reciprocal by default. The Estevez 2019 paper found that the shadow terminator term can be made reciprocal by just applying the term to both incoming and outgoing directions, but they also found that this adjustment can make edges too dark. Instead, in order to make both techniques compatible with bidirectional path tracing integrators, I add in a check for whether the incoming or outgoing direction is pointed at a light, and feed the appropriate direction into the shadow terminator function. Doing this check is enough to make my bidirectional renders match my unidirectional ones; intuitively this approach is similar to the check one has to carry out when applying adjoint Bsdf adjustments [Veach 1996] for shading normals and refraction.

That’s pretty much it! If you want the details for how these two techniques are derived and why they work, I strongly encourage reading the Estevez 2019 chapter in Ray Tracing Gems and reading through both the short paper and the presentation slides / notes for the Chiang 2019 SIGGRAPH talk.

References

Matt Jen-Yuan Chiang, Yining Karl Li, and Brent Burley. 2019. Taming the Shadow Terminator. In ACM SIGGRAPH 2019 Talks. 71:1–71:2.

Alejandro Conty Estevez, Pascal Lecocq, and Clifford Stein. 2019. A Microfacet-Based Shadowing Function to Solve the Bump Terminator Problem. Ray Tracing Gems (2019), 149-158.

Eric Veach. 1996. Non-Symmetric Scattering in Light Transport Algorithms. In Rendering Techniques 1996 (Proceedings of the 7th Eurographics Workshop on Rendering). 82-91.

Errata

Thanks to Matt Pharr for noticing and pointing out a minor bug in the calculateChiang2019ShadowTerminatorTerm() implementation; the code has been updated with a fix.

Woodville RenderMan Art Challenge

Every once in a while, I make a point of spending some significant personal time working on a personal project that uses tools outside of the stuff I’m used to working on day-to-day (Disney’s Hyperion renderer professionally, Takua Renderer as a hobby). A few times each year, Pixar’s RenderMan group holds an art challenge contest where Pixar provides a un-shaded un-uv’d base model and contestants are responsible for layout, texturing, shading, lighting, additional modeling of supporting elements and surrounding environment, and producing a final image. I thought the most recent RenderMan art challenge, “Woodville”, would make a great excuse for playing with RenderMan 22 for Maya; here’s the final image I came up with:

Figure 1: My entry to Pixar's RenderMan Woodville Art Challenge, titled "Morning Retreat". Base treehouse model is from Pixar; all shading, lighting, additional modeling, and environments are mine. Concept by Vasylina Holod. Model by Alex Shilt © Disney / Pixar - RenderMan "Woodville" Art Challenge.

One big lesson I have learned since entering the rendering world is that there is no such thing as the absolute best overall renderer- there are only renderers that are the best suited for particular workflows, tasks, environments, people, etc. Every in-house renderer is the best renderer in the world for the particular studio that built that renderer, and every commercial renderer is the best renderer in the world for the set of artists that have chosen that renderer as their tool of choice. Another big lesson that I have learned is that even though the Hyperion team at Disney Animation has some of the best rendering engineers in the world, so do all of the other major rendering teams, both commercial and in-house. These lessons are humbling to learn, but also really cool and encouraging if you think about it- these lessons means that for any given problem that arises in the rendering world, as an academic field and as an industry, we get multiple attempts to solve it from many really brilliant minds from a variety of background and a variety of different contexts and environments!

As a result, something I’ve come to strongly believe is that for rendering engineers, there is enormous value in learning to use outside renderers that are not the one we work on day-to-day ourselves. At any given moment, I try to have at least a working familiarity with the latest versions of Pixar’s RenderMan, Solid Angle (Autodesk)’s Arnold, and Chaos Group’s Vray and Corona renderers. All of these renderers are excellent, cutting edge tools, and when new artists join our studio, these are the most common commercial renderers that new artists tend to know how to use. Therefore, knowing how these four renderers work and what vocabulary is associated with them tends to be useful when teaching new artists how to use our in-house renderer, and for providing a common frame of reference when we discuss potential improvements and changes to our in-house renderer. All of the above is the mindset I went into this project with, so this post is meant to be something of a breakdown of what I did, along with some thoughts and observations made along the way. This was a really fun exercise, and I learned a lot!

Layout and Framing

For this art challenge, Pixar supplied a base model without any sort texturing or shading or lighting or anything else. The model is by Alex Shilt, based on a concept by Vasylina Holod. Here is a simple render showing what is provided out of the box:

Figure 2: Base model provided by Pixar, rendered against a white cyclorama background using a basic skydome.

I started with just scouting for some good camera angles. Since I really wanted to focus on high-detail shading for this project, I decided from close to the beginning to pick a close-up camera angle that would allow for showcasing shading detail, at the trade-off of not depicting the entire treehouse. A nice (lazy) bonus is that picking a close-up camera angle meant that I didn’t need to shade the entire treehouse; just the parts in-frame. Instead of scouting using just the GL viewport in Maya, I tried using RenderMan for Maya 22’s IPR mode, which replaces the Maya viewport with a live RenderMan render. This mode wound up being super useful for scouting; being able to interactively play with depth of field settings and see even basic skydome lighting helped a lot in getting a feel for each candidate camera angle. Here are a couple of different white clay test renders I did while trying to find a good camera position and framing:

Figure 3: Candidate camera angle with a close-up focus on the entire top of the treehouse.

Figure 4: Candidate camera angle with a close-up focus on a specific triangular A-frame treehouse cabin.

Figure 5: Candidate camera angle looking down from the top of the treehouse.

Figure 6: Candidate camera angle with a close-up focus on the lower set of treehouse cabins.

I wound up deciding to go with the camera angle and framing in Figure 6 for several reasons. First off, there are just a lot of bits that looked fun to shade, such as the round tower cabin on the left side of the treehouse. Second, I felt that this angle would allow me to limit how expansive of an environment I would need to build around the treehouse. I decided around this point to put the treehouse in a big mountainous mixed coniferous forest, with the reasoning being that tree trunks as large as the ones in the treehouse could only come from huge redwood trees, which only grow in mountainous coniferous forests. With this camera angle, I could make the background environment a single mountainside covered in trees and not have to build a wider vista.

UVs and Geometry

The next step that I took was to try to shade the main tree trunks, since the scale of the tree trunks worried me the most about the entire project. Before I could get to texturing and shading though, I first had to UV-map the tree trunks, and I quickly discovered that before I could even UV-map the tree trunks, I would have to retopologize the meshes themselves, since the tree trunk meshes came with some really messy topology that was basically un-UV-able. I retoplogized the mesh in ZBrush and exported it lower res than the original mesh, and then brought it back into Maya, where I used a shrink-wrap deformer to conform the lower res retopologized mesh back onto the original mesh. The reasoning here was that a lower resolution mesh would be easier to UV unwrap and that displacement later would restore missing detail. Figure 7 shows the wireframe of the original mesh on the left, and the wireframe of my retopologized mesh on the right:

Figure 7: Original mesh wireframe on the left, my retopologized version on the right.

In previous projects, I’ve found a lot of success in using Wenzel Jakob’s Instance Meshes application to retopologize messy geometry, but this time around I used ZBrush’s ZRemesher tool since I wanted as perfect a quad grid as possible (at the expense of losing some mesh fidelity) to make UV unwrapping easier. I UV-unwrapped the remeshed tree trunks by hand; the general approach I took was to slice the tree trunks into a series of stacked cylinders and then unroll each cylinder into as rectangular of a UV shell as I could. For texturing, I started with some photographs of redwood bark I found online, turned them greyscale in Photoshop and adjusted levels and contrast to produce height maps, and then took the height maps and source photographs into Substance Designer, where I made the maps tile seamlessly and also generated normal maps. I then took the tileable textures into Substance Painter and painted the tree trunks using a combination of triplanar projections and manual painting. At this point, I had also blocked in a temporary forest in the background made from just instancing two or three tree models all over the place, which I found useful for being able to help get a sense of how the shading on the treehouse was working in context:

Figure 8: In-progress test render with shaded tree trunks and temporary background forest blocked in.

Next up, I worked on getting base shading done for the cabins and various bits and bobs on the treehouse. The general approach I took for the entire treehouse was to do base texturing and shading in Substance Painter, and then add wear and tear, aging, and moss in RenderMan through procedural PxrLayerSurface layers driven by a combination of procedural PxrRoundCube and PxrDirt nodes and hand-painted dirt and wear masks. First though, I had to UV-unwrap all of the cabins and stuff. I tried using Houdini’s Auto UV SOP that comes with Houdini’s Game Tools package… the result (for an example, see Figure 9) was really surprisingly good! In most cases I still had to do a lot of manual cleanup work, such as re-stitching some UV shells together and re-laying-out all of the shells, but the output from Houdini’s Auto UV SOP provided a solid starting point. For each cabin, I grouped surfaces that were going to have a similar material into a single UDIM tile, and sometimes I split similar materials across multiple UDIM tiles if I wanted more resolution. This entire process was… not really fun… it took a lot of time and was basically just busy-work. I vastly prefer being able to paint Ptex instead of having to UV-unwrap and lay out UDIM tiles, but since I was using Substance Painter, Ptex wasn’t an option on this project.

Figure 9: Example of one of the cabins run through Houdini's Auto UV SOP. The cabin is on the left; the output UVs are on the right.

Texturing in Substance Painter and Shading

In Substance Painter, the general workflow I used was to start with multiple triplanar projections of (heavily edited) Quixel Megascans surfaces masked and oriented to different sections of a surface, and then paint on top. Through this process, I was able to get bark to flow with the curves of each log and whatnot. Then, in RenderMan for Maya, I took all of the textures from Substance Painter and used them to drive the base layer of a PxrLayeredSurface shader. All of the textures were painted to be basically greyscale or highly desaturated, and then in Maya I used PxrColorCorrect and PxrVary nodes to add in color. This way, I was able to iteratively play with and dial in colors in RenderMan’s IPR mode without having to roundtrip back to Substance Painter too much. Since the camera in my frame is relatively close to the treehouse, having lots of detail was really important. I put high-res displacement and normal maps on almost everything, which I found helpful for getting that extra detail in. I found that setting micropolygon length to be greater than 1 polygon per pixel was useful for getting extra detail in with displacement, at the cost of a bit more memory usage (which was perfectly tolerable in my case).

One of the unfortunate things about how I chose to UV-unwrap the tree trunks is that UV seams cut across parts of the tree trunks that are visible to the camera; as a result, if you zoom into the final 4K renders, you can see tiny line artifacts in the displacement where UV seams meet. These artifacts arise from displacement values not interpolating smoothly across UV seams when texture filtering is in play; this problem can sometimes be avoided by very carefully hiding UV seams, but sometimes there is no way. The problem in my case is somewhat reduced by expanding displacement values beyond the boundaries of each UV shell in the displacement textures (most applications like Substance Painter can do this natively), but again, this doesn’t completely solve the problem, since expanding values beyond boundaries can only go so far until you run into another nearby UV shell and since texture filtering widths can be variable. This problem is one of the major reasons why we use Ptex so heavily at Disney Animation; Ptex’s robust cross-face filtering functionality sidesteps this problem entirely. I really wish Substance Painter could output Ptex!

For dialing in the colors of the base wood shaders, I created versions of the wood shader base color textures that looked like newer wood and older sun-bleached wood, and then I used a PxrBlend node in each wood shader to blend between the newer and older looking wood, along with procedural wear to make sure that the blend wasn’t totally uniform. Across all of the various wood shaders in the scene, I tied all of the blend values to a single PxrToFloat node, so that I could control how aged all wood across the entire scene looks with a single value. For adding moss to everything, I used a PxrRoundCube triplanar to set up a base mask for where moss should go. The triplanar mask was set up so that moss appears heavily on the underside of objects, less on the sides, and not at all on top. The reasoning for making moss appear on undersides is because in the type of conifer forest I set my scene in, moss tends to grow where moisture and shade are available, which tends to be on the underside of things. The moss itself was also driven by a triplanar projection and was combined into each wood shader as a layer in PxrLayerSurface. I also did some additional manual mask painting in Substance Painter to get moss into some more crevices and corners and stuff on all of the wooden sidings and the wooden doors and whatnot. Finally, the overall amount of moss across all of the cabins is modulated by another single PxrToFloat node, allowing me to control the overall amount of moss using another single value. Figure 10 shows how I could vary the age of the wood on the cabins, along with the amount of moss.

Figure 10: Example of age and moss controllability on one of the cabins. The top row shows, going from left to right, 0% aged, 50% aged, and 100% aged. The bottom row shows, going from left to right, 0% moss, 50% moss, and 100% moss. The final values used were close to 60% for both age and moss.

The spiral staircase initially made me really worried; I originally thought I was going to have to UV unwrap the whole thing, and stuff like the railings are really not easy to unwrap. But then, after a bit of thinking, I realized that the spiral staircase is likely a fire escape staircase, and so it could be wrought iron or something. Going with a wrought iron look allowed me to handle the staircase mostly procedurally, which saved a lot of time. Going along with the idea of the spiral staircase being a fire escape, I figured that the actual main way to access all of the different cabins in the treehouse must be through staircases internal to the tree trunks. This idea informed how I handled that long skinny window above the front door; I figured it must be a window into a stairwell. So, I put a simple box inside the tree behind that window, with a light at the top. That way, a hint of inner space would be visible through the window:

Figure 11: Simple box inside the tree behind the lower window, to give a hint of inner space.

In addition to shading everything, I also had to make some modifications to the provided treehouse geometry. I that in the provided model, the satellite dish floats above its support pole without any actual connecting geometry, so I modeled a little connecting bit for the satellite dish. Also, I thought it would be fun to put some furniture in the round cabin, so I decided to make the walls into plate glass. Once I made the walls into plate glass, I realized that I needed to make a plausible interior for the round cabin. Since the only way into the round cabin must be through a staircase in the main tree trunk, I modeled a new door in the back of the round cabin. With everything shaded and the geometric modifications in place, here is how everything looked at this point:

Figure 12: In-progress test render with initial fully shaded treehouse, along with geoemtric modifications. Click for 4K version.

Set Dressing the Treehouse

The next major step was adding some story elements. I wanted the treehouse to feel lived in, like the treehouse is just somebody’s house (a very unusual house, but a house nonetheless). To help convey that feeling, my plan was to rely heavily on set dressing to hint at the people living here. So the goal was to add stuff like patio furniture, potted plants, laundry hanging on lines, furniture visible through windows, the various bits and bobs of life, etc.

I started by adding a nice armchair and a lamp to the round tower thing. Of course the chair is an Eames Lounge Chair, and to match, the lamp is a modern style tripod floor lamp type thing. I went with a chair and a lamp because I think that round tower would be a lovely place to sit and read and look out the window at the surrounding nature. I thought it would be kind of fun to make all of the furniture kind of modern and stylish, but have all of the modern furniture be inside of a more whimsical exterior. Next, I extended the front porch part of the main cabin, so that I could have some room to place furniture and props and stuff. Of course any good front porch should have some nice patio furniture, so I added some chairs and a table. I also put in a hanging round swing chair type thing with a bit poofy blue cushion; this entire area should be a fun place to sit around and talk in. Since the entire treehouse sits on the edge of a pond, I figured that maybe the people living here like to sit out on the front porch, relax, shoot the breeze, and fish from the pond. Since my scene is set in the morning, I figured maybe it’s late in the morning and they’ve set up some fishing lines to catch some fish for dinner later. To help sell the idea that it’s a lazy fishing morning, I added a fishing hat on one of the chairs and put a pitcher of ice tea and some glasses on the table. I also added a clothesline with some hanging drying laundry, along with a bunch of potted and hanging plants, just to add a bit more of that lived-in feel. For the plants and several of the furniture pieces that I knew I would want to tweak later, I built in controls to their shading graphs using PxrColorCorrect nodes to allow me to adjust hue and saturation later. Many of the furniture, plant and prop models are highly modified, kitbashed, re-textured versions of assets from Evermotion and CGAxis, although some of them (notable the Eames Lounge Chair) are entirely my own.

Figure 13: In-progress test render closeup crop of the lower main cabin, with furniture and plants and props.

Figure 14: In-progress test render closeup crop of the glass round cabin and the upper smaller cabin, with furniture and plants and props.

Building the Background Forest

The last step before final lighting was to build a more proper background forest, as a replacement for the temporary forest I had used up until this point for blocking purposes. For this step, I relied heavily on Maya’s MASH toolset, which I found to provide a great combination of power and ease-of-use; for use cases involving tons of instanced geometry, I certainly found it much easier than Maya’s older Xgen toolset. MASH felt a lot more native to Maya, as opposed to Xgen, which requires a bunch of specific external file paths and file formats and whatnot. I started with just getting some kind of reasonable base texturing down onto the groundplane. In all of the in-progress renders up until this point, the ground plane was just white… you can actually tell if you look closely enough! I eventually got to a place I was happy with using a bunch of different PxrRoundCubes with various rotations, all blended on top of each other using various noise projections. I also threw in some rocks from Quixel Megascans, just to add a bit of variety. I then laid down some low-level ground vegetation, which was meant to peek through the larger trees in various areas. The base vegetation was made up of various ferns, shrubs, and small sapling-ish young conifers placed using Maya’s MASH Placer node:

Figure 15: In-progress test render of the forest floor and under-canopy vegetation.

In the old temporary background forest, the entire forest is made up of only three different types of trees, and it really shows; there was a distinct lack of color variation or tree diversity. So, for the new forest, I decided to use a lot more types of trees. Here is a rough lineup (not necessarily to scale with each other) of how all of the new tree species looked:

Figure 16: Test render of a lineup of the trees used in the final forest.

For the main forest, I hand-placed trees onto the mountain slope as instanced. One cool thing I built in to the forest was PxrColorCorrect nodes in all of the tree shading graphs, with all controls wired up to single master controls for hue/saturation/value so that I could shift the entire forest’s colors easily if necessary. This tool proved to be very useful for tuning the overall vegetation colors later while still maintaining a good amount of variation. I also intentionally left gaps in the forest around the rock formations to give some additional visual variety. Building up the entire under-layer of shrubs and saplings and stuff also paid off, since a lot of that stuff wound up peeking through various gaps between the larger trees:

Figure 17: In-progress test render of the background forest.

The last step for the main forest was adding some mist and fog, which is common in Pacific Northwest type mountainous conifer forests in the morning. I didn’t have extensive experience working with volumes in RenderMan before this, so there was definitely something of a learning curve for me, but overall it wasn’t too hard to learn! I made the mist by just having a Maya Volume Noise node plug into the density field of a PxrVolume; this isn’t anything fancy, but it provided a great start for the mist/fog:

Figure 18: In-progress test render of the background forest with an initial version of mist and fog.

Lighting and Compositing

At this point, I think the entire image together was starting to look pretty good, although, without any final shot lighting, the overall vibe felt more like a spread out of an issue of National Geographic than a more cinematic still out of a film. Normally my instinct is to go with a more naturalistic look, but since part of the objective for this project was to learn to use RenderMan’s lighting toolset for more cinematic applications, I wanted to push the overall look of the image beyond this point:

Figure 19: In-progress test render with everything together, before final shot lighting.

From this point onwards, following a tutorial made by Jeremy Heintz, I broke out the volumetric mist/fog into a separate layer and render pass in Maya, which allowed for adjusting the mist/fog in comp without having to re-render the entire scene. This strategy proved to be immensely useful and a huge time saver in final lighting. Before starting final lighting, I made a handful of small tweaks, which included reworking the moss on the front cabin’s lower support frame to get rid of some visible repetition, tweaking and adding dirt on all of the windows, and dialing in saturation and hue on the clothesline and potted plants a bit more. I also changed the staircase to have aged wooden steps instead of all black cast iron, which helped blend the staircase into the overall image a bit more, and finally added some dead trees in the background forest. Finally, in a last-minute change, I wound up upgrading a lot of the moss on the main tree trunk and on select parts of the cabins to use instanced geometry instead of just being a shading effect. The geometric moss used atlases from Quixel Megascans, bunched into little moss patches, and then hand-scattered using the Maya MASH Placer tool. Upgrading to geometric moss overall provided only a subtle change to the overall image, but I think helped enormously in selling some of the realism and detail; I find it interesting how small visual details like this often can have an out-sized impact on selling an overall image.

For final lighting, I added an additional uniform atmospheric haze pass to help visually separate the main treehouse from the background forest a bit more. I also added a spotlight fog pass to provide some subtle godrays; the spotlight is a standard PxrRectLight oriented to match the angle of the sun. The PxrRectLight also has the cone modified enabled to provide the spot effect, and also has a PxrCookieLightFilter applied with a bit of a cucoloris pattern applied to provide the breakup effect that godrays shining through a forest canopy should have. To provide a stronger key light, I rotated the skydome until I found something I was happy with, and then I split out the sun from the skydome into separate passes. I split out the sun by painting the sun out of the skydome texture and then creating a PxrDistantLight with an exposure, color, and angle matched to what the sun had been in the skydome. Splitting out the sun then allowed me to increase the size of the sun (and decrease the exposure correspondingly to maintain overall the same brightness), which helped soften some otherwise pretty harsh sharp shadows. I also used a good number of PxrRodLightFilters to help take down highlights in some areas, lighten shadows in others, and provide overall light shaping to areas like the right hand side of the right tree trunk. I’ve conceptually known why artists like rods for some time now (especially since rods are heavily used feature in Hyperion at my day job at Disney Animation), but I think this project helped me really understand at a more hands-on level why rods are so great for hitting specific art direction.

After much iteration, here is the final set of render passes I wound up with going into final compositing:

Figure 19: Final render, sun (key) pass. Click for 4K version.

Figure 20: Final render, sky (fill) pass. Click for 4K version.

Figure 21: Final render, practical lights pass. Click for 4K version.

Figure 22: Final render, mist/fog pass. Click for 4K version.

Figure 23: Final render, atmospheric pass. Click for 4K version.

Figure 24: Final render, spotlight pass. Click for 4K version.

In final compositing, since I had everything broken out into separate passes, I was able to quickly make a number of adjustments that otherwise would have been much slower to iterate on if I had done them in-render. I tinted the sun pass to be warmer (which is equivalent to changing the sun color in-render and re-rendering) and tweaked the exposures of the sun pass up and some of the volumetric passes down to balance out the overall image. I also applied a color tint to the mist/fog pass to be cooler, which would have been very slow to experiment with if I had changed the actual fog color in-render. I did all of the compositing in Photoshop, since I don’t have a Nuke license at home. Not having a node-based compositing workflow was annoying, so next time I’ll probably try to learn DaVinci Resolve Fusion (which I hear is pretty good).

For color grading, I mostly just fiddled around in Lightroom. I also added in a small amount of bloom by just duplicating the sun pass, clipping it to only really bright highlight values by adjusting levels in Photoshop, applying a Gaussian blur, exposing down, and adding back over the final comp. Finally, I adjusted the gamma by 0.8 and exposed up by half a stop to give some additional contrast and saturation, which helped everything pop a bit more and feel a bit more moody and warm. Figure 25 shows what all of the lighting, comp, and color grading looks like applied to a 50% grey clay shaded version of the scene, and if you don’t want to scroll all the way back to the top of this post to see the final image, I’ve included it again as Figure 26.

Figure 25: Final lighting, comp, and color grading applied to a 50% grey clay shaded version. Click for 4K version.

Figure 26: Final image. Click for 4K version.

Conclusion

Overall, I had a lot of fun on this project, and I learned an enormous amount! This project was probably the most complex and difficult art project I’ve ever done. I think working on this project has shed a lot of light for me on why artists like certain workflows, which is an incredibly important set of insights for my day job as a rendering engineer. I won’t grumble as much about having to support rods in production rendering now!

Here is a neat progression video I put together from all of the test and in-progress renders that I saved throughout this entire project:

I owe several people an enormous debt of thanks on this project. My wife, Harmony Li, deserves all of my gratitude for her patience with me during this project, and also for being my art director and overall sanity checker. My coworker at Disney Animation, lighting supervisor Jennifer Yu, gave me a lot of valuable critiques, advice, and suggestions, and acted as my lighting director during the final lighting and compositing stage. Leif Pederson from Pixar’s RenderMan group provided a lot of useful tips and advice on the RenderMan contest forum as well.

Finally, my final image somehow managed to score an honorable mention in Pixar’s Art Challenge Final Results, which was a big, unexpected, pleasant surprise, especially given how amazing all of the other entries in the contest are! Since the main purpose of this project for me was as a learning exercise, doing well in the actual contest was a nice bonus, and kind of makes me think I’ll likely give the next RenderMan Art Challenge a shot too with a more serious focus on trying to put up a good showing. If you’d like to see more about my contest entry, check out the work-in-progress thread I kept up in Pixar’s Art Challenge forum; some of the text for this post was adapted from updates I made in my forum thread.

Frozen 2

The 2019 film from Walt Disney Animation Studios is, of course, Frozen 2, which really does not need any additional introduction. Instead, here is a brief personal anecdote. I remember seeing the first Frozen in theaters the day it came out, and at some point halfway through the movie, it dawned on me that what was unfolding on the screen was really something special. By the end of the first Frozen, I was convinced that I had to somehow get myself a job at Disney Animation some day. Six years later, here we are, with Frozen 2’s release imminent, and here I am at Disney Animation. Frozen 2 is my fourth credit at Disney Animation, but somehow seeing my name in the credits at the wrap party for this film was even more surreal than seeing my name in the credits on my first film. Working with everyone on Frozen 2 was an enormous privilege and thrill; I’m incredibly proud of the work we have done on this film!

Under team lead Dan Teece’s leadership, for Frozen 2 we pushed Disney’s Hyperion Renderer the hardest and furthest yet to date, and I think the result really shows in the final film. Frozen 2 is stunningly beautiful to look at it; seeing it for the first time in its completed form was a humbling experience, since there were many moments where I realized I honestly had no idea how our artists had managed to push the renderer as far as they did. During the production of Frozen 2, we also welcomed three superstar rendering engineers to the rendering team: Mark Lee, Joe Schutte, and Wei-Feng Wayne Huang; their contributions to our team and to Frozen 2 simply cannot be overstated!

On Frozen 2, I got to play a part on several fun and interesting initiatives! Hyperion’s modern volume rendering system saw a number of major improvements and advancements for Frozen 2, mostly centered around rendering optically thin volumes. Hyperion’s modern volume rendering system is based on null-collision tracking theory [Kutz et al. 2017], which is exceptionally well suited for dense volumes dominated by high-order scattering (such as clouds and snow). However, as anyone with experience developing a volume rendering system knows, optically thin volumes (such as mist and fog) are a major weak point for null-collision techniques . Wayne was responsible for a number of major advancements that allowed us to efficiently render mist and fog on Frozen 2 using the modern volume rendering system, and Wayne was kind enough to allow me to play something of an advisory / consulting role on that project. Also, Frozen 2 is the first feature film on which we’ve deployed Hyperion’s path guiding implementation into production; this project was the result of some very tight collaboration between Disney Animation and Disney Research Studios. Last summer, I worked with Peter Kutz, our summer intern Laura Lediaev, and with Thomas Müller from ETH Zürich / Disney Research Studios to prototype an implementation of Practical Path Guiding [Müller et al. 2017] in Hyperion. Joe Schutte then took on the massive task (as one of his first tasks on the team, no less!) of turning the prototype into a production-quality feature, and Joe worked with Thomas to develop a number of improvements to the original paper [Müller 2019]. Finally, I worked on some lighting / shading improvements for Frozen 2, which included developing a new spot light implementation for theatrical lighting, and, with Matt Chiang and Brent Burley, a solution to the long-standing normal / bump mapped shadow terminator problem [Chiang et al. 2019]. We also benefited from more improvements in our denoising tech [Dahlberg et al. 2019] which arose as a joint effort between our own David Adler, ILM, Pixar and the Disney Research Studios rendering team.

I think Frozen projects provide an interesting window into how far rendering has progressed at Disney Animation over the past six years. We’ve basically had some Frozen project going on every few years, and each Frozen project upon completion has represented the most cutting edge rendering capabilities we’ve had at the time. The original Frozen in 2013 was the studio’s last project rendered using Renderman, and also the studio’s last project to not use path tracing. Frozen Fever in 2015, by contrast, was one of the first projects (alongside Big Hero 6) to use Hyperion and full path traced global illumination. The jump in visual quality between Frozen and Frozen Fever was enormous, especially considering that they were released only a year and a half apart. Olaf’s Frozen Adventure, which I’ve written about before, served as the testbed for a number of enormous changes and advancements that were made to Hyperion in preparation for Ralph Breaks the Internet. Frozen 2 represents the full extent of what Hyperion can do today, now that Hyperion is a production-hardened, mature renderer backed by a team that is now very experienced. The original Frozen looked decent when it first came out, but since it was the last non-path-traced film we made, it looked dated visually just a few years later. Comparing the original Frozen with Frozen 2 is like night and day; I’m very confident that Frozen 2 will still look visually stunning and hold up well long into the future. A great example is in all of the clothing in Frozen 2; when watching the film, take a close look at all of the embroidery on all of the garments. In the original Frozen, a lot of the embroidery work is displacement mapped or even just normal mapped, but in Frozen 2, all of the embroidery is painstakingly constructed from actual geometric curves [Liu et al. 2020], and as a result every bit of embroidery is rendered in incredible detail!

One particular thing in Frozen 2 that makes me especially happy is how all of the water looks in the film, and especially how the water looks in the dark seas sequence. On Moana, we really struggled with getting whitewater and foam to look appropriately bright and white. Since that bright white effect comes from high-order scattering in volumes and at the time we were still using our old volume rendering system that couldn’t handle high-order scattering well, the artists on Moana wound up having to rely on a lot of ingenious trickery to get whitewater and foam to look just okay. I think Moana is a staggeringly beautiful film, but if you know where to look, you may be able to tell that the foam looks just a tad bit off. On Frozen 2, however, we were able to do high-order scattering, and as a result, all of the whitewater and foam in the dark seas sequence looks just absolutely amazing. No spoilers, but all I’ll say is that there’s another part in the movie that isn’t in any trailer where my jaw was just on the floor in terms of water rendering; you’ll know it when you see it. A similar effect has been done before in a previous CG Disney Animation movie, but the effect in Frozen 2 is on a far grander, far more impressive, far more amazing scale [Tollec et al. 2020].

In addition to the rendering tech advancements we made on Frozen 2, there are a bunch of other cool technical initiatives that I’d recommend reading about! Each of our films has its own distinct world and look, and the style requirements on Frozen 2 often required really cool close collaborations between the lighting and look departments and the rendering team; the “Show Yourself” sequence near the end of the film was a great example of the amazing work these collaborations can produce [Sathe et al. 2020]. Frozen 2 had a lot of characters that were actually complex effects, such as the Wind Spirit [Black et al. 2020] and the Nokk water horse [Hutchins et al. 2020]; these characters required tight collaborations between a whole swath of departments ranging from animation to simulation to look to effects to lighting. Even the forest setting of the film required new tech advancements; we’ve made plenty of forests before, but integrating huge-scale effects into the forest resulted in some cool new workflows and techniques [Joseph et al. 2020].

To give a sense of just how gorgeous Frozen 2 looks, below are some stills from the movie, in no particular order, 100% rendered using Hyperion. If you love seeing cutting edge rendering in action, I strongly encourage going to see Frozen 2 on the biggest screen you can find! The film has wonderful songs, a fantastic story, and developed, complex, funny characters, and of course there is not a single frame in the movie that isn’t stunningly beautiful.

Here is the part of the credits with Disney Animation’s rendering team, kindly provided by Disney! I always encourage sitting through the credits for movies, since everyone in the credits put so much hard work and passion into what you see onscreen, but I especially recommend it for Frozen 2 since there’s also a great post-credits scene.

All images in this post are courtesy of and the property of Walt Disney Animation Studios.

References

Cameron Black, Trent Correy, and Benjamin Fiske. 2020. Frozen 2: Creating the Wind Spirit. In ACM SIGGRAPH 2020 Talks. 22:1-22:2.

Matt Jen-Yuan Chiang, Yining Karl Li, and Brent Burley. 2019. Taming the Shadow Terminator. In ACM SIGGRAPH 2019 Talks. 71:1-71:2.

Henrik Dahlberg, David Adler, and Jeremy Newlin. 2019. Machine-Learning Denoising in Feature Film Production. In ACM SIGGRAPH 2019 Talks. 21:1-21:2.

David Hutchins, Cameron Black, Marc Bryant, Richard Lehmann, and Svetla Radivoeva. 2020. “Frozen 2”: Creating the Water Horse . In ACM SIGGRAPH 2020 Talks. 23:1-23:2.

Norman Moses Joseph, Vijoy Gaddipati, Benjamin Fiske, Marie Tollec, and Tad Miller. 2020. Frozen 2: Effects Vegetation Pipeline. In ACM SIGGRAPH 2020 Talks. 7:1-7:2.

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics. 36, 4 (2017), 111:1-111:16.

Ying Liu, Jared Wright, and Alexander Alvarado. 2020. Making Beautiful Embroidery for “Frozen 2”. In ACM SIGGRAPH 2020 Talks. 73:1-73:2.

Thomas Müller. Practical Path Guiding in Production. 2019. In ACM SIGGRAPH 2019 Course Notes: Path Guiding in Production. 37-50.

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum. 36, 4 (2017), 91-100.

Amol Sathe, Lance Summers, Matt Jen-Yuan Chiang, and James Newland. 2020. The Look and Lighting of “Show Yourself” in “Frozen 2”. In ACM SIGGRAPH 2020 Talks. 71:1-71:2.

Marie Tollec, Sean Jenkins, Lance Summers, and Charles Cunningham-Scott. 2020. Deconstructing Destruction: Making and Breaking of ”Frozen 2”’s Dam. In ACM SIGGRAPH 2020 Talks. 24:1-24:2.

SIGGRAPH 2019 Talk- Taming the Shadow Terminator

This year at SIGGRAPH 2019, Matt Jen-Yuan Chiang, Brent Burley, and I had a talk that presents a technique for smoothing out the harsh shadow terminator problem that often arises when high-frequency bump or normal mapping is used in ray tracing. We developed this technique as part general development on Disney’s Hyperion Renderer for the production of Frozen 2. This work is mostly Matt’s; Matt was very kind in allowing me to help out and play a small role on this project.

This work is contemporaneous with the recent work on the same shadow terminator problem that was carried out and published by Estevez et al. from Sony Pictures Imageworks and published in Ray Tracing Gems. We actually found out about the Estevez et al. technique at almost exactly the same time that we submitted our SIGGRAPH talk, which proved to be very fortunate, since after our talk was accepted, we were than able to update our short paper with additional comparisons between Estevez et al. and our technique. I think this is a great example of how having multiple rendering teams in the field tackling similar problems and sharing results provides a huge benefit to the field as a whole- we now have two different, really good solutions to what used to be a big shading problem!

A higher-res version of Figure 1 from the paper: (left) <a href="https://blog.yiningkarlli.com/content/images/2019/Aug/header_shadingnormals.png">shading normals</a> exhibiting the harsh shadow terminator problem, (center) <a href="https://blog.yiningkarlli.com/content/images/2019/Aug/header_chiang.png">our technique</a>, and (right) <a href="https://blog.yiningkarlli.com/content/images/2019/Aug/header_estevez.png">Estevez et al.'s technique</a>.

Here is the paper abstract:

A longstanding problem with the use of shading normals is the discontinuity introduced into the cosine falloff where part of the hemisphere around the shading normal falls below the geometric surface. Our solution is to add a geometrically derived shadowing function that adds minimal additional shadowing while falling smoothly to zero at the terminator. Our shadowing function is simple, robust, efficient and production proven.

The paper and related materials can be found at:

Matt Chiang presented the paper at SIGGRAPH 2019 in Log Angeles as part of the “Lucy in the Sky with Diamonds - Processing Visuals” Talks session. A pdf version of the presentation slides, along with presenter notes, are available on my project page for the paper. I’d also recommend getting the author’s version of the short paper instead of the official version as well, since the author’s version includes some typo fixes made after the official version was published.

Work on this project started early in the production of Frozen 2, when our look artists started to develop the shading of the dresses and costumes in Frozen 2. Because intricate woven fabrics and patterns are an important part of the Scandinavian culture that Frozen 2 is inspired by, the shading in Frozen 2 pushed high-resolution high-frequency displacing and normal mapping further than we ever had before with Hyperion in order to make convincing looking textiles. Because of how high-frequency the normal mapping was pushed, the bump/normal mapped shadow terminator problem became worse and worse and proved to be a major pain point for our look and lighting artists. In the past, our look and lighting artists have worked around shadow terminator issues using a combination of techniques, such as falling back to full displacement, or using larger area lights to try to soften the shadow terminator. However, these techniques can be problematic when they are in conflict with art direction, and force artists to think about an additional technical dimension when they otherwise would rather be focused on the artistry.

Our search for a solution began with Peter Kutz looking at “Microfacet-based Normal Mapping for Robust Monte Carlo Path Tracing” by Schüssler et al., which focused on addressing energy loss when rendering shading normals. The Schüssler et al. 2017 technique solved the energy loss problem by constructing a microfacet surface comprised of two facets per shading point, instead the the usual one. The secondary facet is used to account for things like inter-reflections between the primary and secondary facets. However, the Schüssler et al. 2017 technique wound up not solving the shadow terminator problems we were facing; using their shadowing function produced a look that was too flat.

Matt Chiang then realized that the secondary microfacet approach could be used to solve the shadow terminator problem using a different secondary microfacet configuration; instead of using a vertical second facet as in Schüssler, Matt made the secondary facet perpendicular to the shading normal. By making the secondary facet perpendicular, as a light source slowly moves towards the grazing angle relative to the microfacet surface, peak brightness is maintained when the light is parallel to the shading normal, while additional shadowing is introduced beyond the parallel angle. This solution worked extremely well, and is the technique presented in our talk / short paper.

The final piece of the puzzle was addressing a visual discontinuity produced by Matt’s technique when the light direction reaches and moves beyond the shading normal. Instead of falling smoothly to zero, the shape of the shadow terminator undergoes a hard shift from a cosing fall-off formed by the dot product of the shading normal and light direction to a linear fall-off. Matt and I played with a number of different interpolation schemes to smooth out this transition, and eventually settled on a custom smooth-step function. During this process, I made the observation that whatever blending function we used needed to introduce C1 continuity in order to remove the visual discontinuity. This observation led Brent Burley to realize that instead of a complex custom smooth-step function, a simple Hermite interpolation would be enough; this Hermite interpolation is the one presented in the talk / short paper.

For a much more in-depth view at all of the above, complete with diagrams and figures and examples, I highly recommend looking at Matt’s presentation slides and presenter notes.

Here is a test render of the Iduna character’s costume from Frozen 2, from before we had this technique implemented in Hyperion. The harsh shadow terminator produces an illusion that makes her arms and torso look boxier than the actual underlying geometry is:

Iduna's costume without our shadow terminator technique. Note how boxy the arms and torso look.

…and here is the same test render, but now with our soft shadow terminator fix implemented and enabled. Note how her arms and torso now look properly rounded, instead of boxy!

Iduna's costume with our shadow terminator technique. The arms and torso look correctly rounded now.

This technique is now enabled by default across the board in Hyperion, and any article of clothing or costume you see in Frozen 2 is using this technique. So, through this project, we got to play a small role in making Elsa, Anna, Kristoff, and everyone else look like themselves!

Hyperion Publications

Every year at SIGGRAPH (and sometimes at other points in the year), members of the Hyperion team inevitably get asked if there is any publicly available information about Disney’s Hyperion Renderer. The answer is: yes, there is actually a lot of publicly available information!

Figure 1: Previews of the first page of every Hyperion-related publication from Disney Animation, Disney Research Studios, and other research partners.

One amazing aspect of working at Walt Disney Animation Studios is the huge amount of support and encouragement we get from our managers and the wider studio for publishing and sharing our work with the wider academic world and industry. As part of this sharing, the Hyperion team has had the opportunity to publish a number of papers over the years detailing various interesting techniques used in the renderer.

I think it’s very important to mention here that another one of my favorite aspects of working on the Hyperion team is the deep collaboration we get to engage in with our sister rendering team at Disney Research Studios (formerly known as Disney Research Zürich). The vast majority of the Hyperion team’s publications are joint works with Disney Research Studios, and I personally think it’s fair to say that all of Hyperion’s most interesting advanced features are just as much the result of research and work from Disney Research Studios as they are the result of our team’s own work. Without a doubt, Hyperion, and by extension, our movies, would not be what they are today without Disney Research Studios. Of course, we also collaborate closely with our sister rendering teams at Pixar Animation Studios and Industrial Light & Magic as well, and there are numerous examples where collaboration between all of these teams has advanced the state of the art in rendering for the whole industry.

So without further ado, below are all of the papers that the Hyperion team has published or worked on or had involvement with over the years, either by ourselves or with our counterparts at Disney Research Studios, Pixar, ILM, and other research groups. If you’ve ever been curious to learn more about Disney’s Hyperion Renderer, here are 45 publications with a combined 462 pages of material! For each paper, I’ll link to a preprint version, link to the official publisher’s version, and link any additional relevant resources for the paper. I’ll also give the citation information, give a brief description, list the teams involved, and note how the paper is relevant to Hyperion. This post is meant to be a living document; I’ll come back and update it down the line with future publications. Publications are listed in chronological order.

  1. Ptex: Per-Face Texture Mapping for Production Rendering

    Brent Burley and Dylan Lacewell. Ptex: Per-face Texture Mapping for Production Rendering. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2008), 27(4), June 2008.

    Internal project from Disney Animation. This paper describes per-face textures, a UV-free way of texture mapping. Ptex is the texturing system used in Hyperion for all non-procedural texture maps. Every Disney Animation film made using Hyperion is textured entirely with Ptex. Ptex is also available in many commercial renderers, such as Pixar’s RenderMan!

  2. Physically-Based Shading at Disney

    Brent Burley. Physically Based Shading at Disney. In ACM SIGGRAPH 2012 Course Notes: Practical Physically-Based Shading in Film and Game Production, August 2012.

    Internal project from Disney Animation. This paper describes the Disney BRDF, a physically principled shading model with a artist-friendly parameterization and layering system. The Disney BRDF is the basis of Hyperion’s entire shading system. The Disney BRDF has also gained widespread industry adoption the basis of a wide variety of physically based shading systems, and has influenced the design of shading systems in a number of other production renderers. Every Disney Animation film made using Hyperion is shaded using the Disney BSDF (an extended version of the Disney BRDF, described in a later paper).

  3. Sorted Deferred Shading for Production Path Tracing

    Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley. Sorted Deferred Shading for Production Path Tracing. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2013), 32(4), June 2013.

    Internal project from Disney Animation. Won the Best Paper Award at EGSR 2013! This paper describes the sorted deferred shading architecture that is at the very core of Hyperion. Along with the previous two papers in this list, this is one of the foundational papers for Hyperion; every film rendered using Hyperion is rendered using this architecture.

  4. Residual Ratio Tracking for Estimating Attenuation in Participating Media

    Jan Novák, Andrew Selle, and Wojciech Jarosz. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2014), 33(6), November 2014.

    Joint project between Disney Research Studios and Disney Animation. This paper described a pair of new, complementary techniques for evaluating transmittance in heterogeneous volumes. These two techniques made up the core of Hyperion’s first and second generation volume rendering implementations, used from Big Hero 6 up through Moana.

  5. Visualizing Building Interiors using Virtual Windows

    Norman Moses Joseph, Brett Achorn, Sean D. Jenkins, and Hank Driskill. Visualizing Building Interiors using Virtual Windows. In ACM SIGGRAPH Asia 2014 Technical Briefs, December 2014.

    Internal project from Disney Animation. This paper describes Hyperion’s “hologram shader”, which is used for creating the appearance of parallaxed, fully shaded, detailed building interiors without adding additional geometric complexity to a scene. This technique was developed for Big Hero 6. Be sure to check out the supplemental materials on the publisher site for a cool video breakdown of the technique.

  6. Path-space Motion Estimation and Decomposition for Robust Animation Filtering

    Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. Path-space Motion Estimation and Decomposition for Robust Animation Filtering. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2015), 34(4), June 2015.

    Joint project between Disney Research Studios, ETH Zürich, and Disney Animation. This paper describes a denoising technique suitable for animated sequences. Not directly used in Hyperion’s denoiser, but both inspired by and influential towards Hyperion’s first generation denoiser.

  7. Portal-Masked Environment Map Sampling

    Benedikt Bitterli, Jan Novák, and Wojciech Jarosz. Portal-Masked Environment Map Sampling. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2015), 34(4), June 2015.

    Joint project between Disney Research Studios and Disney Animation. This paper describes an efficient method for importance sampling environment maps. This paper was actually derived from the technique Hyperion uses for importance sampling lights with IES profiles, which has been used on all films rendered using Hyperion.

  8. A Practical and Controllable Hair and Fur Model for Production Path Tracing

    Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. A Practical and Controllable Hair and Fur Model for Production Path Tracing. In ACM SIGGRAPH 2015 Talks, August 2015.

    Joint project between Disney Research Studios and Disney Animation. This short paper gives an overview of Hyperion’s fur and hair model, originally developed for use on Zootopia. A full paper was published later with more details. This fur/hair model is Hyperion’s fur/hair model today, used on every film beginning with Zootopia to present.

  9. Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering

    Brent Burley. Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering. In ACM SIGGRAPH 2015 Course Notes: Physically Based Shading in Theory and Practice, August 2015.

    Internal project from Disney Animation. This paper describes the full Disney BSDF (sometimes referred to in the wider industry as Disney BRDF v2) used in Hyperion, and also describes a novel subsurface scattering technique called normalized diffusion subsurface scattering. The Disney BSDF is the shading model for everything ever rendered using Hyperion, and normalized diffusion was Hyperion’s subsurface model from Big Hero 6 up through Moana. For a public open-source implementation of the Disney BSDF, check out PBRT v3’s implementation. Also, check out Pixar’s RenderMan for an implementation in a commercial renderer!

  10. Approximate Reflectance Profiles for Efficient Subsurface Scattering

    Per H Christensen and Brent Burley. Approximate Reflectance Profiles for Efficient Subsurface Scattering. Pixar Technical Memo, #15-04, August 2015.

    Joint project between Pixar and Disney Animation. This paper presents several useful parameterizations for the normalized diffusion subsurface scattering model presented in the previous paper in this list. These parameterizations are used for the normalized diffusion implementation in Pixar’s RenderMan 21 and later.

  11. Big Hero 6: Into the Portal

    David Hutchins, Olun Riley, Jesse Erickson, Alexey Stomakhin, Ralf Habel, and Michael Kaschalk. Big Hero 6: Into the Portal. In ACM SIGGRAPH 2015 Talks, August 2015.

    Internal project from Disney Animation. This short paper describes some interesting volume rendering challenges that Hyperion faced during the production of Big Hero 6’s climax sequence, set in a volumetric fractal portal world.

  12. Level-of-Detail for Production-Scale Path Tracing

    Magdalena Martinek, Christian Eisenacher, and Marc Stamminger. Level-of-Detail for Production-Scale Path Tracing. In VMV 2015: Proceedings of the 20th International Symposium on Vision, Modeling, and Visualization, October 2015.

    Joint project between Disney Animation and the University of Erlangen-Nurmberg. This paper gives an overview of a SVO-based level-of-detail system for use in production path tracing. This system was originally prototyped in an early version of Hyperion and informed the automatic shading level-of-detail system that was used on Big Hero 6; automatic shading level-of-detail has since been removed from Hyperion.

  13. A Practical and Controllable Hair and Fur Model for Production Path Tracing

    Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. A Practical and Controllable Hair and Fur Model for Production Path Tracing. Computer Graphics Forum (Proceedings of Eurographics 2016), 35(2), May 2016.

    Joint project between Disney Research Studios and Disney Animation. This paper gives an overview of Hyperion’s fur and hair model, originally developed for use on Zootopia. This fur/hair model is Hyperion’s fur/hair model today, used on every film beginning with Zootopia to present. This paper is now also implemented in the open source PBRT v3 renderer, and also serves as the basis of the hair/fur shader in Chaos Group’s V-Ray Next renderer.

  14. Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering

    David Koerner, Jan Novák, Peter Kutz, Ralf Habel, and Wojciech Jarosz. Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering. In Proceedings of EGSR 2016, Experimental Ideas & Implementations, June 2016. 2016-06-24,

    Joint project between Disney Research Studios, University of Stuttgart, Dartmouth College, and Disney Animation. This paper describes a method for accelerating brute force path traced subsurface scattering; this technique was developed during early experimentation in making path traced subsurface scattering practical for production in Hyperion.

  15. Nonlinearly Weighted First-Order Regression for Denoising Monte Carlo Renderings

    Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitian, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. Nonlinearly Weighted First-Order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2016), 35(4), July 2016.

    Joint project between Disney Research Studios, Edinburgh Napier University, Dartmouth College, and Disney Animation. This paper describes a high-quality, stable denoising technique based on a thorough analysis of previous technique. This technique was developed during a larger project to develop a state-of-the-art successor to Hyperion’s first generation denoiser.

  16. Practical and Controllable Subsurface Scattering for Production Path Tracing

    Matt Jen-Yuan Chiang, Peter Kutz, and Brent Burley. Practical and Controllable Subsurface Scattering for Production Path Tracing. In ACM SIGGRAPH 2016 Talks, July 2016.

    Internal project from Disney Animation. This short paper describes the novel parameterization and multi-wavelength sampling strategy used to make path traced subsurface scattering practical for production. Both of these are implemented in Hyperion’s path traced subsurface scattering system and have been in use on all shows beginning with Olaf’s Frozen Adventure to present.

  17. Efficient Rendering of Heterogeneous Polydisperse Granular Media

    Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. Efficient Rendering of Heterogeneous Polydisperse Granular Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2016), 35(6), November 2016.

    External project from Disney Research Studios, ETH Zürich, and Dartmouth College, inspired in part by production problems encountered at Disney Animation related to rendering things like sand, snow, etc. This technique uses shell transport functions to accelerate path traced rendering of massive assemblies of grains. Thomas Müller implemented an experimental version of this technique in Hyperion, along with an interesting extension for applying the shell transport theory to volume rendering.

  18. Practical Path Guiding for Efficient Light-Transport Simulation

    Thomas Müller, Markus Gross, and Jan Novák. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2017), 36(4), July 2017.

    External joint project between Disney Research Studios and ETH Zürich, inspired in part by challenges with handling complex light transport efficiently in Hyperion. Won the Best Paper Award at EGSR 2017! This paper describes a robust, unbiased technique for progressively learning complex indirect illumination in a scene during a render and intelligently guiding paths to better sample difficult indirect illumination effects. Implemented in Hyperion, along with a number of interesting improvements documented in a later paper. In use on Frozen 2 and future films.

  19. Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings

    Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony DeRose, and Fabrice Rousselle. Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017), 36(4), July 2017.

    External joint project between University of California Santa Barbara, Disney Research Studios, ETH Zürich, and Pixar, developed as part of the larger effort to develop a successor to Hyperion’s first generation denoiser. This paper describes a supervised learning approach for denoising filter kernels using deep convolutional neural networks. This technique is the basis of the modern Disney-Research-developed second generation deep-learning denoiser in use by the rendering teams at Pixar and ILM, and by the Hyperion iteam at Disney Animation.

  20. Production Volume Rendering

    Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. Production Volume Rendering. In ACM SIGGRAPH 2017 Courses, July 2017.

    Joint publication from Pixar, Sony Pictures Imageworks, and Disney Animation. This course covers volume rendering in modern path tracing renderers, from basic theory all the way to practice. The last chapter details the inner workings of Hyperion’s first and second generation transmittance estimation based volume rendering system, used from Big Hero 6 up through Moana.

  21. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes

    Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017), 36(4), July 2017.

    Joint project between Disney Research Studios and Disney Animation. This paper describes two complementary new null-collision tracking techniques: decomposition tracking and spectral tracking. The paper also introduces to computer graphics an extended integral formulation of null-collision algorithms, originally developed in the field of reactor physics. These two techniques are the basis of Hyperion’s modern third generation null-collision tracking based volume rendering system, in use beginning on Olaf’s Frozen Adventure to present.

  22. The Ocean and Water Pipeline of Disney’s Moana

    Sean Palmer, Jonathan Garcia, Sara Drakeley, Patrick Kelly, and Ralf Habel. The Ocean and Water Pipeline of Disney’s Moana. In ACM SIGGRAPH 2017 Talks, July 2017.

    Internal project from Disney Animation. This short paper describes the water pipeline developed for Moana, including the level set compositing and rendering system that was implemented in Hyperion. This system has since found additional usage on shows since Moana.

  23. Recent Advancements in Disney’s Hyperion Renderer

    Brent Burley, David Adler, Matt Jen-Yuan Chiang, Ralf Habel, Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. Recent Advancements in Disney’s Hyperion Renderer. In ACM SIGGRAPH 2017 Course Notes: Path Tracing in Production Part 1, August 2017.

    Publication from Disney Animation. This paper describes various advancements in Hyperion since Big Hero 6 up through Moana, with a particular focus towards replacing multiple scattering approximations with true, brute-force path-traced solutions for both better artist workflows and improved visual quality.

  24. Denoising with Kernel Prediction and Asymmetric Loss Functions

    Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Rothlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018), 37(4), August 2017.

    Joint project between Disney Research Studios, Pixar, and Disney Animation. This paper describes a variety of improvements and extensions made to the 2017 Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings paper; collectively, these improvements comprise the modern Disney-Research-developed second generation deep-learning denoiser in use in production at Pixar, ILM, and Disney Animation. At Disney Animation, used experimentally on Ralph Breaks the Internet and in full production beginning with Frozen 2.

  25. Plausible Iris Caustics and Limbal Arc Rendering

    Matt Jen-Yuan Chiang and Brent Burley. Plausible Iris Caustics and Limbal Arc Rendering. ACM SIGGRAPH 2018 Talks, August 2018.

    Internal project from Disney Animation. This paper describes a technique for rendering realistic, physically based eye caustics using manifold next-event estimation combined with a plausible procedural geometric eye model. This realistic eye model is implemented in Hyperion and used on all projects beginning with Encanto.

  26. The Design and Evolution of Disney’s Hyperion Renderer

    Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. The Design and Evolution of Disney’s Hyperion Renderer. ACM Transactions on Graphics, 37(3), August 2018.

    Publication from Disney Animation. This paper is a systems architecture paper for the entirety of Hyperion. The paper describes the history of Disney’s Hyperion Renderer, the internal architecture, various systems such as shading, volumes, many-light sampling, emissive geometry, path simplification, fur rendering, photon-mapped caustics, subsurface scattering, and more. The paper also describes various challenges that had to be overcome for practical production use and artistic controllability. This paper covers everything in Hyperion beginning from Big Hero 6 up through Ralph Breaks the Internet.

  27. Clouds Data Set

    Walt Disney Animation Studios. Clouds Data Set, August 2018.

    Publicly released data set for rendering research, by Disney Animation. This data set was produced by our production artists as part of the development process for Hyperion’s modern third generation null-collision tracking based volume rendering system.

  28. Moana Island Scene Data Set

    Walt Disney Animation Studios. Moana Island Scene Data Set, August 2018.

    Publicly released data set for rendering research, by Disney Animation. This data set is an actual production scene from Moana, originally rendered using Hyperion and ported to PBRT v3 for the public release. This data set gives a sense of the typical scene complexity and rendering challenges that Hyperion handles every day in production.

  29. Denoising Deep Monte Carlo Renderings

    Delio Vicini, David Adler, Jan Novák, Fabrice Rousselle, and Brent Burley. Denoising Deep Monte Carlo Renderings. Computer Graphics Forum, 38(1), February 2019.

    Joint project between Disney Research Studios and Disney Animation. This paper presents a technique for denoising deep (meaning images with multiple depth bins per pixel) renders, for use with deep-compositing workflows. This technique was developed as part of general denoising research from Disney Research Studios and the Hyperion team.

  30. The Challenges of Releasing the Moana Island Scene

    Rasmus Tamstorf and Heather Pritchett. The Challenges of Releasing the Moana Island Scene. In Proceedings of EGSR 2019, Industry Track, July 2019.

    Short paper from Disney Animation’s research department, discussing some of the challenges involved in preparing a production Hyperion scene for public release. The Hyperion team provided various support and advice to the larger studio effort to release the Moana Island Scene.

  31. Practical Path Guiding in Production

    Thomas Müller. Practical Path Guiding in Production. In ACM SIGGRAPH 2019 Course Notes: Path Guiding in Production, July 2019.

    Joint project between Disney Research Studios and Disney Animation. This paper presents a number of improvements and extensions made to Practical Path Guiding developed by in Hyperion by Thomas Müller and the Hyperion team. In use in production on Frozen 2.

  32. Machine-Learning Denoising in Feature Film Production

    Henrik Dahlberg, David Adler, and Jeremy Newlin. Machine-Learning Denoising in Feature Film Production. In ACM SIGGRAPH 2019 Talks, July 2019.

    Joint publication from Pixar, Industrial Light & Magic, and Disney Animation. Describes how the modern Disney-Research-developed second generation deep-learning denoiser was deployed into production at Pixar, ILM, and Disney Animation.

  33. Taming the Shadow Terminator

    Matt Jen-Yuan Chiang, Yining Karl Li, and Brent Burley. Taming the Shadow Terminator. In ACM SIGGRAPH 2019 Talks, August 2019.

    Internal project from Disney Animation. This short paper describes a solution to the long-standing “shadow terminator” problem associated with using shading normals. The technique in this paper is implemented in Hyperion and has been in use in production starting on Frozen 2 through present.

  34. On Histogram-Preserving Blending for Randomized Texture Tiling

    Brent Burley. On Histogram-Preserving Blending for Randomized Texture Tiling. Journal of Computer Graphics Techniques, 8(4), November 2019.

    Internal project from Disney Animation. This paper describes some modiciations to the histogram-preserving hex-tiling algorithm of Heitz and Neyret; these modifications make implementing the Heitz and Neyret technique easier and more efficient. This paper describes Hyperion’s implementation of the technique, in use in production starting on Frozen 2 through present.

  35. The Look and Lighting of “Show Yourself” in “Frozen 2”

    Amol Sathe, Lance Summers, Matt Jen-Yuan Chiang, and James Newland. The Look and Lighting of “Show Yourself” in “Frozen 2”. In ACM SIGGRAPH 2020 Talks, August 2020.

    Internal project from Disney Animation. This paper describes the process that went into achieving the final look and lighting of the “Show Yourself” sequence in Frozen 2, including a new tabulation-based approach implemented in Hyperion to maintain energy conservation in rough dielectric reflection and transmission.

  36. Practical Hash-based Owen Scrambling

    Brent Burley. Practical Hash-based Owen Scrambling. Journal of Computer Graphics Techniques, 9(4), December 2020.

    Internal project from Disney Animation. This paper describes a new version of Owen scrambling for the Sobol sequence that is both simple to implement, efficient to evaluate, and broadly applicable to various problems.

  37. Unbiased Emission and Scattering Importance Sampling For Heterogeneous Volumes

    Wei-Feng Wayne Huang, Peter Kutz, Yining Karl Li, and Matt Jen-Yuan Chiang. Unbiased Emission and Scattering Importance Sampling For Heterogeneous Volumes. In ACM SIGGRAPH 2021 Talks, August 2021.

    Internal project from Disney Animation. This paper describes a pair of new unbiased distance-sampling methods for production volume path tracing, with a specific focus on sampling emission and scattering. First used on Raya and the Last Dragon.

  38. The Atmosphere of Raya and the Last Dragon

    Marc Bryant, Ryan DeYoung, Wei-Feng Wayne Huang, Joe Longson, and Noel Villegas. The Atmosphere of Raya and the Last Dragon. In ACM SIGGRAPH 2021 Talks, August 2021.

    Internal project from Disney Animation. This paper describes the various rendering and workflow improvements that went into rendering atmospheric volumes to produce the highly atmospheric lighting in Raya and the Last Dragon.

  39. Practical Multiple-Scattering Sheen Using Linearly Transformed Cosines

    Tizian Zeltner, Brent Burley, and Matt Jen-Yuan Chiang. Practical Multiple-Scattering Sheen Using Linearly Transformed Cosines. In ACM SIGGRAPH 2022 Talks, August 2022.

    Joint project between École Polytechnique Fédérale de Lausanne (EPFL) and Disney Animation. This paper descibes the new multiple-scattering sheen model used in the Disney Principled BSDF starting with the production of Strange World.

  40. “Encanto” - Let’s Talk About Bruno’s Visions

    Corey Butler, Brent Burley, Wei-Feng Wayne Huang, Yining Karl Li, and Benjamin Huang. “Encanto” - Let’s Talk About Bruno’s Visions. In ACM SIGGRAPH 2022 Talks, August 2022.

    Internal project from Disney Animation. This paper describes the process of creating the holographic prophecy shards from Encanto, including a new teleportation shader in Hyperion that was developed specifically to support this effect.

  41. Fracture-Aware Tessellation of Subdivision Surfaces

    Brent Burley and Francisco Rodriguez. Fracture-Aware Tessellation of Subdivision Surfaces. In ACM SIGGRAPH 2022 Talks, August 2022.

    Internal project from Disney Animation. This paper describes a new tessellation algorithm for fractured subdivision surfaces, used as part of Disney Animation’s destruction FX pipeline and implemented in Hypeprion. First used in production on Encanto.

  42. Progressive Null-Tracking for Volumetric Rendering

    Zackary Misso, Yining Karl Li, Brent Burley, Daniel Teece, and Wojciech Jarosz. Progressive Null Tracking for Volumetric Rendering. SIGGRAPH ‘23: ACM SIGGRAPH 2023 Conference Proceedings, August 2023.

    Joint project between Dartmouth College and Disney Animation. This paper describes a new method to progressively learn bounding majorants when using null-tracking techniques to perform unbiased rendering of general heterogeneous volumes with unknown bounding majorants.

  43. Splat: Developing a ‘Strange’ Shader

    Kendall Litaker, Brent Burley, Dan Lipson, and Mason Khoo. Splat: Developing a ‘Strange’ Shader. In ACM SIGGRAPH 2023 Talks, August 2023.

    Internal project from Disney Animation. This paper describes the unusual challenges encountered when developing the unique shading and look for the Splat character from Strange World.

  44. Cache Points for Production-Scale Occlusion-Aware Many-Lights Sampling and Volumetric Scattering

    Yining Karl Li, Charlotte Zhu, Gregory Nichols, Peter Kutz, Wei-Feng Wayne Huang, David Adler, Brent Burley, and Daniel Teece. Cache Points for Production-Scale Occlusion-Aware Many-Lights Sampling and Volumetric Scattering. DigiPro ‘24: Proceedings of the Digital Production Symposium 2024, July 2024.

    Internal project from Disney Animation. This paper describes Hyperion’s unique many-lights importance sampling system. Used on every project rendered using Hyperion to date, this paper contains deep implementation details and notes from a decade of production experience.

  45. Dynamic Screen Space Textures for Coherent Stylization

    Brent Burley, Brian Green, and Daniel Teece. Dynamic Screen Space Textures for Coherent Stylization. In ACM SIGGRAPH 2024 Talks, July 2024.

    Internal project from Disney Animation. This paper describes a novel new dynamic screen space texturing system that makes up a key part of the stylized watercolor look of Wish.

Figure 2: Hyperion logo, modeled by Disney Animation artist Chuck Tappan and rendered in Disney's Hyperion Renderer.

Again, this post is meant to be a living document; any new publications with involvement from the Hyperion team will be added here. Of course, the Hyperion team is not the only team at Disney Animation that regularly publishes; for a full list of publications from Disney Animation, see the official Disney Animation publications page. The Disney Animation Technology website is also worth keeping an eye on if you want to keep up on what our engineers and TDs are working on!

If you’re just getting started and want to learn more about rendering in general, the must-read text that every rendering engineer has on their desk or bookshelf is Physically Based Rendering 3rd Edition by Matt Pharr, Wenzel Jakob, and Greg Humphreys (now available online completely for free!). Also, the de-facto standard beginner’s text today is the Ray Tracing in One Weekend series by Peter Shirley, which provides a great, gentle, practical introduction to ray tracing, and is also available completely for free. Also take a look at Real-Time Rendering 4th Edition, Ray Tracing Gems (also available online for free), The Graphics Codex by Morgan McGuire, and Eric Haines’s Ray Tracing Resources page.

Many other amazing rendering teams at both large studios and commercial vendors also publish regularly, and I highly recommend keeping up with all of their work too! For a good starting point into exploring the wider world of production rendering, check out the ACM Transactions on Graphics Special Issue on Production Rendering, which is edited by Matt Pharr and contains extensive, detailed systems papers on Pixar’s RenderMan, Weta Digital’s Manuka, Solid Angle (Autodesk)’s Arnold, Sony Picture Imageworks’ Arnold, and of course Disney Animation’s Hyperion. A sixth paper that I would group with five above is the High Performance Graphics 2017 paper detailing the architecture of DreamWorks Animation’s MoonRay.

For even further exploration, extensive course notes are available from SIGGRAPH courses every year. Particularly good recurring courses to look at from past years are the Path Tracing in Production course (2017, 2018, 2019), the absolutely legendary Physically Based Shading course (2010, 2012, 2013, 2014, 2015, 2016, 2017), the various incarnations of a volume rendering course (2011, 2017, 2018), and now due to the dawn of ray tracing in games, Advances in Real-Time Rendering and Open Problems in Real-Time Rendering. Also, Stephen Hill typically collects links to all publicly available course notes, slides, source code, and more for SIGGRAPH each year after the conference on his blog; both his blog and the blogs listed on the sidebar of his website are essentially mandatory reading in the rendering world. Also, interesting rendering papers are always being published in journals and at conferences. The major journals to check are ACM Transactions on Graphics (TOG), Computer Graphics Forum (CGF), and the Journal of Computer Graphics Techniques (JCGT); the major academic conferences where rendering stuff appears are SIGGRAPH, SIGGRAPH Asia, EGSR (Eurographics Symposium on Rendering), HPG (High Performance Graphics), MAM (Workshop on Material Appearance Modeling), EUROGRAPHICS, and i3D (ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games); another three industry conferences where interesting stuff often appears are DigiPro, GDC (Game Developers Conference) and GTC (Graphics Technology Conference). A complete listing of the contents for all of these conferences every year, along with links to preprints, is compiled by Ke-Sen Huang.

A large number of people have contributed directly to Hyperion’s development since the beginning of the project, in a variety of capacities ranging from core developers to TDs and support staff and all the way to notable interns. In no particular order, including both present and past: Daniel Teece, Brent Burley, David Adler, Yining Karl Li, Mark Lee, Charlotte Zhu, Brian Green, Andrew Bauer, Lea Reichardt, Mackenzie Thompson, Wei-Feng Wayne Huang, Matt Jen-Yuan Chen, Joe Schutte, Andrew Gartner, Jennifer Yu, Peter Kutz, Ralf Habel, Patrick Kelly, Gregory Nichols, Andrew Selle, Christian Eisenacher, Jan Novák, Ben Spencer, Doug Lesan, Lisa Young, Tami Valdez, Andrew Fisher, Noah Kagan, Benedikt Bitterli, Thomas Müller, Tizian Zeltner, Zackary Misso, Magdalena Martinek, Mathijs Molenaar, Laura Lediav, Guillaume Loubet, David Koerner, Simon Kallweit, Gabor Liktor, Ulrich Muller, Norman Moses Joseph, Stella Cheng, Marc Cooper, Tal Lancaster, and Serge Sretschinsky. Our closest research partners at Disney Research Studios, Pixar Animation Studios, Industrial Light & Magic, and elsewhere include (in no particular order): Marios Papas, Marco Manzi, Tiziano Portenier, Rasmus Tamstorf, Gerhard Roethlin, Per Christensen, Julian Fong, Mark Meyer, André Mazzone, Wojciech Jarosz, Fabrice Rouselle, Christophe Hery, Ryusuke Villemin, and Magnus Wrenninge. Invaluable support from studio leadership over the years has been provided by (again, in no particular order): Nick Cannon, Munira Tayabji, Bettina Martin, Laura Franek, Collin Larkins, Golriz Fanai, Rajesh Sharma, Chuck Tappan, Sean Jenkins, Darren Robinson, Alex Nijmeh, Hank Driskill, Kyle Odermatt, Adolph Lusinsky, Ernie Petti, Kelsey Hurley, Tad Miller, Mark Hammel, Mohit Kallianpur, Brian Leach, Josh Staub, Steve Goldberg, Scott Kersavage, Andy Hendrickson, Dan Candela, Ed Catmull, and many others. Of course, beyond this enormous list, there is an even more enormous list of countless artists, technical directors, production supervisors, and other technology development teams at Disney Animation who motivated Hyperion, participated in its development, and contributed to its success. If anything in this post has caught your interest, keep an eye out for open position listings on DisneyAnimation.com; maybe these lists can one day include you!

Finally, here is a list of all publicly released and announced projects to date made using Disney’s Hyperion Renderer:

Feature Films: Big Hero 6 (2014), Zootopia (2016), Moana (2016), Ralph Breaks the Internet (2018), Frozen 2 (2019), Raya and the Last Dragon (2021), Encanto (2021), Strange World (2022), Wish (2023)

Shorts and Featurettes: Feast (2014), Frozen Fever (2015), Inner Workings (2016), Gone Fishing (2017), Olaf’s Frozen Adventure (2017), Myth: A Frozen Tale1 (2019), Once Upon a Snowman (2020), Us Again (2021), Far From the Tree (2021), Once Upon A Studio (2023)

Animated Series: At Home With Olaf (2020), Olaf Presents (2021), Baymax! (2022), Zootopia+ (2022)

Short Circuit Shorts: Exchange Student (2020), Just a Thought (2020), Jing Hua (2020), Elephant in the Room (2020), Puddles (2020), Lightning in a Bottle (2020), Zenith (2020), Drop (2020), Fetch (2020), Downtown (2020), Hair-Jitsu (2020), The Race (2020), Lucky Toupée (2020), Cycles2 (2020), A Kite’s Tale2 (2020), Going Home (2021), Crosswalk (2021), Songs to Sing in the Dark (2021), No. 2 to Kettering (2021)

Intern Shorts: Ventana (2017), Voilà (2018), Maestro (2019), June Bug (2021)

Filmmaker Co-op Shorts: Weeds (2017)

1 VR project running on Unreal Engine, with shading and textures baked out of Disney’s Hyperion Renderer.

2 VR project running on Unity, with shading and textures baked out of Disney’s Hyperion Renderer.